nanoll extt
Please use this identifier to cite or link to this item: http://lrcdrs.bennett.edu.in:80/handle/123456789/1541
Title: ABC transporters mined through comparative transcriptomics associate with organ-specific accumulation of picrosides in a medicinal herb, Picrorhiza kurroa
Authors: Roma Pandey, Ashish Sharma, Rajinder Singh Chauhan
Keywords: ABC transporters, Gene expression, Picrorhiza kurroa, Picroside-I and picroside-II, Transcriptome
Issue Date: 2022
Publisher: Springer
Series/Report no.: 0033183X
Abstract: Picrorhiza kurroa Royle ex Benth is a valuable medicinal herb of North-Western Himalayas due to presence of two major bioactive compounds, picroside-I and picroside-II used in the preparation of several hepatoprotective herbal drugs. These compounds accumulate in stolons/rhizomes; however, biosynthesized in different organs, viz., picroside-I in shoots and picroside-II in roots. As of today, no information exists on what transporters are transporting these metabolites from shoots and roots to the final storage organ, stolon, which ultimately transforms into rhizome. The ATP-binding cassette (ABC) transporters are reported to transport majority of secondary metabolites, including terpenoids in plants, therefore, we mined P. kurroa transcriptomes to identify and shortlist potential candidates. A total of 99 ABC transporter-encoding transcripts were identified in 3 differential transcriptomes, PKSS (shoots), PKSTS (stolons), and PKSR (roots) of P. kurroa, based on in silico comparative analysis and transcript abundance. 15 of these transcripts were further validated for their association using qRT-PCR in shoots, roots and stolon tissues in P. kurroa accessions varying for picroside-I and picroside-II contents. Organ-specific expression analysis revealed that PkABCA1, PkABCG1, and PkABCB5 had comparatively elevated expression in shoots; PkABCB2 and PkABCC2 in roots; PkABCB3 and PkABCC1 in stolon tissues of P. kurroa. Co-expression network analysis using ABC genes as hubs further unravelled important interactions with additional components of biosynthetic machinery. Our study has provided leads, first to our knowledge as of today, on putative ABC transporters possibly involved in long distance and local transport of picrosides in P. kurroa organs, thus opening avenues for designing a suitable genetic intervention strategy. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
URI: https://doi.org/10.1007/s00709-022-01786-7
http://lrcdrs.bennett.edu.in:80/handle/123456789/1541
ISSN: 0033183X
Appears in Collections:Magazine Articles_BT

Files in This Item:
File SizeFormat 
2.pdf
  Restricted Access
1.89 MBAdobe PDFView/Open Request a copy

Contact admin for Full-Text

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.