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Abstract 

The new-age advancements in biomedical signal processing are due to circuits and systems 

which can process complex data, which made the healthcare facilities more compact and 

affordable. Among healthcare devices, cardiac pacemakers have become a recurrent biomedical 

device which is engrafted in the human body to monitor and detect a subject’s heart rate. 

Cardiovascular diseases (CVDs) or diseases related to the heart are due to abnormalities or 

disorders of the heart and blood vessels. Till date, limited literature is available, which focuses 

on a single technique that can perform ECG signal denoising, ECG signal detection, and lossless 

data compression. Current circuitry can be interpreted as a cardiac electrical signal compression 

algorithm representing the time signal information into a single event description of the cardiac 

activity. ECG signal detection techniques like an artificial neural network, genetic algorithm, 

Hilbert transform, hidden Markov model are some sophisticated algorithms which provide 

suitable results, but their realization using IC technologies is very complicated. Due to less 

complexity and high performance, wavelet transform based approaches are widely used. In this 

thesis, after a thorough analysis of various wavelet transforms, it is found that biorthogonal 

wavelet transform is best suitable to detect ECG signal. The main steps involved in the ECG 

detection process consist of de-noising and locating different ECG waves using adaptive slope 

prediction thresholding.  

The significant challenges involved in the wireless transmission of ECG data are data 

conversion and power consumption. As medical regulatory boards demand a lossless 

compression technique, lossless compression technique with a high bit compression ratio is 

highly required. In this thesis, biorthogonal wavelet transform based ECG signal compression 

technique is proposed. The proposed methodology achieves the lowest signal to noise ratio, and 

the lowest root mean square error. Also, the proposed ECG detection technique is capable of 

distinguishing accurately between healthy, myocardial infarction, congestive heart failure and 

coronary artery disease patients with a detection accuracy, sensitivity, specificity, and error of 

99.92%, 99.94%, 99.92% and 0.0013, respectively. The use of biorthogonal wavelet transform 

based data compression of ECG signal achieves a high compression ratio of 22.61. The 

advantages and effectiveness of the proposed algorithm are verified by comparing with the 

existing methods. System Verilog hardware description language and Xilinx® Vivado® design 

suite are used for coding and functional verification of the proposed scheme. Area, power, and 



   

xiv 
 

delay requirements of the proposed scheme are calculated by implementing the proposed 

detector on the Xilinx® Virtex®-7 FPGA. Lowest power consumption, area, delay, and switching 

energy, respectively, of 99 nW, 1.1 mm2, 10 ns, and 0.990 µJ has been achieved using the 

proposed scheme. 

Keywords: ECD, CVD, Discrete wavelet transform, lossless compression, QRS complex, heart 

rate monitoring   
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CHAPTER 1 

INTRODUCTION 

1.1 DEVELOPMENT OF IMPLANTABLE CARDIAC PACEMAKER SYSTEM 

A cardiac pacemaker is a device that can treat cardiac dysrhythmia by rapidly tracking human’s 

heartrate and rhythm. Cardiac pacemakers deliver rhythmic electric stimulus in a controlled 

manner to the heart to maintain the heartbeat. In 1950 John Hopps and Wilfred Bigelow 

presented the first cardiac pacemaker. Ability to deliver a periodic and administrated electric 

stimulus made the implantable and wearable cardiac pacemakers a reality in today’s globally 

emerging world of healthcare devices. Different researchers have not only made the heavy 

pacemakers undergo a physical change in terms of reduction in size and weight but also 

economical and within reach to many, thus being a lifesaver. Evolution of a cardiac pacemaker 

system is shown in Fig. 1.1 [1].  

 

Fig. 1. 1 Evolution of cardiac pacemaker system 

The market share of pacemaker products is increasing rapidly in the biomedical device domain, 

as shown in Fig. 1.2 [2]. The requirements of modern-day pacemakers are small in size, 

lightweight, programmable, extended lifetime of the pacemaker device, and more efficient.    

The advent of modern technological breakthroughs and inventions have left behind all the 

lacunas like single-chamber, asynchronous, non-programmable pacing. Pacemakers are 
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versatile and can be implanted in a physician's office to make the therapy unique to human 

needs. 

 

Fig. 1. 2 Market share of pacemaker products 

1.2 NEED AND MOTIVATION 

The heart is a vital organ in the human body and is an undeniable fact that one needs a healthy 

heart. The structure and working of a human heart are very complicated. Millions of patients 

use personal medical devices which can analyze health condition. Personal medical devices 

collect medical data, which is then transmitted to medical personnel to provide necessary 

medical care. One of such personal medical device is cardiac pacemaker. Pacemaker device 

usually detects and monitors the subject’s heartbeat. The essential care is provided to the subject 

after receiving abnormal signals from the heart. In this way, pacemaker helps to maintain the 

heart beat rate of a person in a safe range. Once the pacemaker is implanted into a human body, 

the pacemaker is expected to operate for several years without any intervention [3]. The big 

challenge here is to develop a self-effacing, reliable, and patient-friendly device for reading and 

monitoring electrocardiogram (ECG) data continually and uninterruptedly. The next level of 

challenge for such devices is to be light in weight with extended battery life, which requires a 

substantial integration and simulation of signals and complex data.  
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1.3 IDENTIFYING THE RESEARCH PROBLEM  

Medical expenditures are on the all-time surge and high with the fast growth in world 

population. In Europe, one-third of the population will be aged over 65 years by the year 2035. 

China and India are also facing the fastest-growing aging problem. Over one-third of the world's 

elderly population lives in China and India, and this proportion is envisaged to increase up to 

40% by 2020 [4]. Healthcare became an important agenda for both individuals and governments. 

The latest reports from the World Health Organization (WHO) purport that dealing with the 

aging population is a vital healthcare aspect [5, 6]. The present healthcare structures and 

approaches are facing more significant challenges in dealing with the healthcare problems of 

the aging population. Accordingly, identifying human diseases in a cost-effective and timely 

manner with precision has taken center stage [7-10]. ECG monitoring became ubiquitous 

because of its supremacy in the diagnosis of heart-related diseases and is also making its way 

both in hospitals and research areas [11]. 

The present medical fraternities are dependent on the usage of bulky conventional ECG 

equipment with multiple electrodes for ECG signal acquisition. ECG equipment having twelve 

electrodes is the norm of the day but suffers from the limitations of efficient data handling even 

on a short-term basis. As the twelve electrode ECG equipment has portability limitations, the 

activities of the subject are measured only during data collection, thus making continuous 

patient monitoring a tedious task. Modern ECG data acquisition devices are not only expensive 

but also need the training to handle the equipment. Thus, even for regular health monitoring, a 

subject needs frequent and regular hospital visits. The frequent visits to the hospital have severe 

limitations like irregular health monitoring, increase in hospital’s burden, and most importantly 

causing physical and monetary hardship to the subject. Hence, the need of the day is a cheap, 

simple, portable, reliable, and long-term ECG signal monitoring system [12]. Many long-term 

ECG signal monitoring approaches are proposed during the last few decades. First ECG signal 

monitoring system based on system-on-chip (SoC) was introduced in 2012 [13], but this system 

consumed significant amounts of energy as it transmitted raw data. Hence, a combined 

technique for ECG signal denoising, ECG detection, and data compression is highly required.  
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1.4 OBJECTIVE OF THE WORK 

Based on the above-mentioned brief overview, the following were identified as objectives of 

the work. 

➢ Designing an efficient ECG signal denoising technique. The metric under consideration 

is Signal-to-noise-ratio. 

➢ Designing an efficient ECG signal detection algorithm with a high detection accuracy 

and low overall system complexity. 

➢ Finding a suitable process for ECG signal denoising and detection. 

➢ Developing an algorithm which is useful for both ECG detection and data compression. 

➢ Performance comparison of the proposed algorithm with existing algorithms on 

different standard ECG databases. 

➢ Hardware implementation of a combined ECG signal denoising and ECG detection 

technique. 

1.5 OUTLINE OF THE THESIS 

The proposed thesis comprises seven chapters. In Chapter 1, a basic introduction to the 

development of implantable cardiac pacemaker systems, need, motivation, and identification of 

research problem are discussed. Then, the objectives and scope of the proposed work and 

organization of the thesis are presented. 

Chapter 2 provides a discussion on the functionality and electrical activity of the human heart. 

Characteristics and parameters of a typical ECG signal and various noises which corrupt an 

ECG signal are discussed. Implantable cardiac pacemaker systems are also discussed. 

In Chapter 3, a detailed survey of various ECG signal detection and data compression techniques 

are presented. A detailed description of various benchmark databases and statistical metrics used 

to evaluate the performance of the combine ECG denoising, ECG signal detection, and lossless 

data compression Technique is also presented.  

In Chapter 4, ECG signal denoising, wave detection, and lossless data compression Techniques 

for cardiac pacemaker systems are studied. ECG signal denoising, ECG signal detection, and 

lossless data compression are discussed further. A detailed discussion of the proposed 

approaches and their theoretical backgrounds are presented. 
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In Chapter 5, various performance evaluation metrics, experiment results of the proposed 

combine ECG signal denoising, ECG signal detection, and lossless data compression are 

discussed.  

In Chapter 6, FPGA implementation of combine ECG signal denoising, and ECG signal 

detection Technique for cardiac pacemaker systems are carried out, and the thesis is concluded 

in Chapter 7. 
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CHAPTER 2 

BASIC THEORY OF ELECTROCARDIOGRAPHY 

Human life and behavior are changing very rapidly due to fast industrial and economic growth. 

The most common effect of change in lifestyle is increasing the risk of cardiac diseases, which 

is one of the major causes of human causalities. The human heart is a vital organ as it circulates 

blood through the body. Many diseases related to heart have various causes, and most of them 

can be diagnosed by observing and conjecturing ECG. In this chapter, important information 

about the structure of human heart, and its electrical behavior, a cardiac pacemaker with its 

structure and the characteristics of ECG are discussed to understand the functionality of the 

heart and heartbeat.  

2.1 BASIC INTRODUCTION TO CARDIOVASCULAR SYSTEM 

Human cardiovascular system generally consists of three interrelated components, namely, 

heart, blood, and blood vessels. The cardiovascular system, also known as the circulatory 

system, is the blood transportation system of a human body. The heart pumps the blood to move 

nutrients through the blood vessels to nourish and remove the metabolic wastes from the body. 

The heart has two circuits within the circulatory pathway, which work together as a closed 

circulatory system. These two pathways are called as pulmonary pathway and systemic 

pathway. In a human body, the right side of the heart pushes the blood into the pulmonary 

pathway so that it can be oxygenated in the lungs. The left side of the heart pumps oxygenated 

blood to the entire body. The blood is then returned to the heart via the systemic pathway. The 

heart is an involuntary muscle that works somewhat independently from the nervous system. 

The heart is a muscular organ with four hollow chambers, as shown in Fig. 2.1. The heart 

consists of two upper chambers called atria, and two lower chambers called ventricles. The left 

and right side of the heart is divided by the septum. The heart is made up of three layers of 

tissues, namely, endocardium, myocardium, and pericardium. The conductive pathway within 

the heart has four main stations through which it senses electrical impulses and directs the heart 

beating. The four components of the conductive pathway are the sino-atrial (SA) node, 

atrioventricular (AV) node, a bundle of HIS, and the Purkinje fibers. SA node, also known as 
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the pacemaker, is located in the right atria. SA node starts a spark and passes it onto the next 

relay station, the AV node. The AV node is located between the right atria and the ventricle on 

the back wall of the heart. The bundle of HIS located in the heart’s septum passes the spark 

received by the AV node. The Purkinje fibers then spread the electrical charge throughout the 

myocardium, which is referred as the cardiac muscle. The spread of electric charge causes the 

heart to contract through the atria and the ventricles. 

 

Fig. 2. 1 Internal structure of human heart 

2.2 FUNCTIONING OF HUMAN HEART 

The contraction and rarefication of atria and ventricles in a steady rhythm are known as the 

heartbeat. During a normal heartbeat, blood from tissues and lungs flows into the atria and then 

into the ventricles. There are two valves inside the heart called interatrial septum and 

interventricular septum. These two valves function like doors between the atria and ventricles 

and prevent the blood flowing from backward into the atria and keep the blood on the left and 
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right side from mixing. The tricuspid valve opens into the right ventricle, and the bicuspid valve 

opens into the left ventricle. Muscular thin tissues called chordae tendineae hold the valves in 

place during the forceful contraction of the ventricles. Blood leaving the ventricles passes 

through another set of valves known as the pulmonary valve and the aortic valve. 

In order to efficiently pump blood, heart muscles called myocardium are arranged in a unique 

pattern. Three layers of myocardium wrap around the lower part of the heart, which is twisted 

and tightened in different directions to push blood through the heart. When the pacemaker cells 

generate electrical signals inside the heart, the heart muscles called a myocytes contract as a 

group. The right and left half of the heart works together as a dual pump. On the right side of 

the heart, deoxygenated blood from the body’s tissues flows through large veins called the 

superior and inferior vena cava into the right atrium. Next, the blood moves into the right 

ventricle, which contracts and sends blood out of the heart to the lungs to get oxygen and get rid 

of carbon-di-oxide. On the left side of the heart, oxygen-rich blood from the lungs flows through 

the pulmonary veins into the left atrium. The blood then moves into the left ventricle, which 

contracts and sends blood out of the heart through the aorta to feed the cells and tissues. The 

first branches of the aorta are the coronary arteries which supply the heart muscle with oxygen 

and nutrients. Arteries branching from the middle and lower parts of the aorta supply blood to 

the rest of the body. 

 

Fig. 2. 2 Graphical representation of a typical ECG signal 
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2.3 CHARACTERISTICS OF AN ELECTROCARDIOGRAM SIGNAL 

The electrical conduction system of the heart controls the generation and propagation of 

electrical signals or action potentials that cause the heart’s muscles to contract and pump blood. 

This electrical activity can be measured by electrodes placed at specific locations on the body 

from which a recording is produced in the form of a graph. The graph or recording showing the 

electrical activity of the heart as a function of time, famously known as an electrocardiogram or 

ECG. Thus, ECG contains tracing of the overall electrical activity of the heart resulting from 

the propagation of different action potentials. Each ECG representation of the cardiac cycle 

consists of waves, segments, and intervals, as shown in Fig. 2.2 [17]. An ECG signal normally 

consists of five waves, namely, P-wave, Q-wave, R-wave, S-wave, T-wave. Sometimes a sixth 

wave called U-wave is also observed. All these six waves either have a positive or negative 

deflection.  

The flat isoelectric lines between the waves are called segments. The time duration of wave and 

segment collectively contribute to the duration of an interval. The cardiac cycle refers to the 

electrical and mechanical events generated during every heartbeat. It is a standard to display 

ECG signal on a screen or a paper, in which the vertical axis of an ECG signal indicates the 

amplitude of the electrical activity of the heart and the horizontal axis indicates the time. The 

ECG signal display is normally divided into large squares with a 5 mm side length. These large 

squares are further sub-divided into smaller squares with a side length of 1 mm. A standard ECG 

signal is recorded at a speed of 25 mm per second. Thus, each large square measures a time 

interval of 0.20 seconds, and small square measures a time interval of 0.04 seconds.  

P-wave in an ECG signal represents atrial depolarization and is best observed by using ECG 

recording lead II and lead V1. The duration of P-wave ranges from 0.06 - 0.10 seconds and the 

amplitude is less than 0.25 mV. The Q-wave indicates depolarization of the interventricular 

septum. Q-wave is the first negative deflection after P-wave. R-wave is the first positive 

deflection after P-wave and Q-wave. The duration of a Q-wave is less than 0.04 seconds, and 

the amplitude of the Q-wave is less than 20% of the corresponding R-wave amplitude in ECG 

recording leads III, AVF, V5, and V6. Q-wave is ordinarily absent in ECG recording leads V1 

to V4. R-wave represents depolarization of the apex and lateral walls of the ventricles. S-wave 



   

11 
 

represents the depolarization of the base of the ventricle. Q-wave, R-wave, S-wave are 

collectively called a QRS-complex. The QRS-complex represents ventricular contraction.  

S-wave is the second negative deflection in the QRS-complex or the first negative deflection 

after R-wave. The duration of R-wave ranges from 0.08 - 0.12 seconds, and the amplitude ranges 

from 1 - 1.5 mV. In ECG recording leads V1 and V2, the amplitude of R-wave is smaller than 

the amplitude of S-wave. In ECG recording leads V3 and V4, the amplitude of R-wave and S-

wave are almost equal. In ECG recording leads V5 and V6; the amplitude of R-wave is greater 

than the amplitude of S-wave. T-wave corresponds to ventricular repolarization. T-wave is an 

asymmetric wave. The duration of T-wave ranges from 0.13 - 0.30 seconds and the amplitude 

is less than one-third of the corresponding QRS-complex. U-wave is observed in a standard 

ECG signal which represents the repolarization of the papillary muscle and repolarization of the 

Purkinje fibers. The amplitude of the U-wave is less than one-fourth of the corresponding T-

wave. U-wave is best observed when the heartrate decreases in hypokalemia using the ECG 

recording leads V1 and V2. The two segments that can be seen on an ECG are PQ-segment and 

ST-segment. The duration of the PQ-segment ranges from 0.06 - 0.10 seconds, and the duration 

of ST-segment ranges from 0.05 - 0.15 seconds. PR-interval, ST-interval, QT-interval, and RR-

interval are four important intervals in an ECG signal. PR-interval corresponds to 

atrioventricular conduction and extends from the beginning of the P-wave until the beginning 

of the QRS-complex. PR-interval usually ranges between 0.12 - 0.20 seconds.  

A prolonged PR-interval indicates atrioventricular block, and a shortened PR-interval indicates 

Wolff-Parkinson-White syndrome. ST-interval extends from the beginning of the ST-wave till 

the end of T-wave. Characteristic patterns of ST-interval indicate ischemic heart disease. QT-

interval extending from the beginning of QRS-complex till the end of the T-wave denotes the 

time required for ventricular depolarization and repolarization. The duration of QRS-complex 

ranges typically between 0.35 - 0.45 seconds. The time duration between successive R-waves 

of QRS-complexes is called as RR-interval. RR-interval determines the heartrate [18]. 

Amplitude and time interval of various waves and intervals present in an ECG signal are 

summarized in Table 2.1. 

In a healthy heart, each beat begins in the right atrium with an action potential signal from the 

SA node, also known as natural pacemaking signal. The signal then spreads across both atria,  
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Table 2. 1: Parameters of normal ECG signal 

ECG 

Parameter 

Normal Time 

Interval (seconds) 

Normal Amplitude 

(mV) 
Remarks 

P wave 0.11 ± 0.02 0.25 ± 0.05  

Increment and decrement in 

amplitude indicate hypokalemia 

and hyperkalemia, respectively. 

QRS-

complex 
0.10 ± 0.02 1.60 ± 0.5  

Increment in amplitude 

indicates cardiac hypertrophy 

R wave ----- 1.60 ± 0.5  --- 

Q wave ----- 
0.25 times that of the 

corresponding R-wave 
--- 

T wave ----- 0.5  
Indicates the possibility of a 

myocardial infraction 

PR interval 0.12 – 0.20 ------ 

Time is taken by the electrical 

signal to travel from atria to 

ventricle. 

causing the muscle to depolarize and contract. In the ECG signal, the atrial depolarization is 

represented by P-wave. 

The period of conduction that follows atrial systole and proceeds the contraction of the ventricle 

is depicted on the ECG by PR-segment (a flat line following the P-wave). The signal leaves atria 

and enters ventricle via the atrial-ventricular node located in the interatrial septum. As the signal 

spreads through the ventricles, including ventricle systole, the contractile fibers depolarize and 

contract very rapidly. The QRS-complex in an ECG signal represents rapid ventricular 

depolarization. Atrial repolarization also occurs at the same time but is hidden in the QRS-

complex of ECG signal. Finally, as the electrical signal passes out of the ventricles, the 

ventricular wall starts to relax and recovers to a state described as ventricular diastole. The dome 

shape T-wave on the ECG marks the ventricular repolarization. In an ECG signal, the ST-

segment depicts the period when the ventricles are depolarized. The QT-interval determines the 

time taken by the heart to depolarize and repolarize the ventricles. The sequence of events 

described above associated with an ECG signal are repeated during every normal heartbeat.  
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2.4 OVERVIEW OF IMPLANTABLE CARDIAC PACEMAKER SYSTEM 

A cardiac pacemaker is a device used to treat cardiac dysrhythmia by rapidly tracking heartrate 

and rhythm of a heart. Cardiac pacemakers deliver rhythmic electric stimulus in a controlled 

manner to the heart to maintain the heartbeat. Pacemaker system mainly consists of two 

components [14]; pacing lead and pacemaker device, as shown in Fig. 2.3. The pacing lead is a 

flexible insulated wire which connects the human heart to the pacemaker device. The pacing 

lead, as shown in Fig. 2.4, is made up of four components: electrode tip, conductor, insulation, 

and electrode. The electrode tip is inserted into the heart through a vein that carries impulses 

between the pacemaker device and heart to stimulate the heartbeat. The same electrode tip is 

used to exchange information between heart and pacemaker device, which accesses the 

condition of the heart. A conductor coil delivers the pacing pulses to the heart, and an insulator 

isolates the conductor from the heart walls. Pacemaker device is a decision-making device in a 

cardiac pacemaker. Single chamber pacemaker, dual-chamber pacemaker, and Biventricular 

pacemaker are different types of pacemakers [15]. Single chamber pacemaker has one lead 

either positioned into the atria or ventricle, most commonly used by patients with sinus node 

disease. 

 

Fig. 2. 3 Cardiac pacemaker system 
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Fig. 2. 4 Basic components of a pacemaker’s pacing lead 

Dual-chamber pacemaker has two leads, each positioned in the right atria and right ventricle. 

Patients with a heart block most commonly use dual-chamber pacemakers. Biventricular 

pacemakers have three leads, each positioned into the right ventricle, left ventricle and left atria. 

Biventricular pacemakers are most commonly found in patients with heart failure. 

 

Fig. 2. 5 Main components in a pacemaker device 

 

Fig. 2. 6 Block diagram of a cardiac pacemaker 

Pacemaker device has two main components, as shown in Fig. 2.5, electronic circuitry and a 

power managing system. The electronic circuitry contains all the necessary circuits needed to 

operate the device, detect the heart activity, estimate the heartrate, and deliver the necessary 

rhythmic electric stimulus [16]. The electronic circuitry mainly consists of following sub-
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circuits: ECG detector, wave counter, reference comparator, and pulse generator. Block diagram 

of a typical cardiac pacemaker circuit is as shown in Fig. 2.6.  

2.6 NOISE EFFECTS IN ECG 

The ECG signal, like any other electric signal, is prone to noises. Before processing an ECG 

signal, all noises need to be filtered using denoising techniques. The ECG signals shown in Fig. 

2.7 (a-f) are sampled at 360 Hz. The most significant noises that corrupt an ECG signal are [19] 

as follows.    

1) Powerline Interference: the noise component due to the interference between the powerline 

and the ECG signal is called as powerline interference. Power line interference introduces a 

signal with a constant amplitude at the frequency of powerline. The frequency of powerline is 

country-specific, which is 50 Hz or 60 Hz. The effect of power line interference on an ECG 

signal is shown in Fig. 2.7 (a). The power spectral density of the powerline interference 

corrupted ECG signal is shown in Fig. 2.7 (b). 

2) Electrode Contact Noise: The noise component introduced into an ECG signal due to the lack 

of proper electrical contact between the electrode and skin is known as electrode contact noise. 

As shown in Fig. 2.7 (c) electrode contact noise is characterized by a baseline shift in the ECG 

signal. The power spectral density of the Electrode contact noise corrupted ECG signal is shown 

in Fig. 2.7 (d). 

3) Motion Artefact: Motion artifact is a type of noise caused by the physical movement of the 

patient during the process of ECG recording. Motion artifact introduces a baseline shift in the 

ECG signal and can be as large as 500% of the peak-to-peak amplitude of an ECG signal. The 

effect of motion artifact on the ECG signal is shown in Figure 2.7 (e). The power spectral density 

of the motion artefact corrupted ECG signal is shown in Fig. 2.7 (f). 

4) Muscle Contraction: The contraction and expansion of muscles introduce noise in the 

frequency range of 10 kHz in the ECG signal. As shown in Fig. 2.7 (g), muscle contraction 

introduces frequency distortion to an ECG signal. The power spectral density of the muscle 

contraction corrupted ECG signal is shown in Fig. 2.7 (h). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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(f) 

 

(g) 

 

(h) 

 

(i) 
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(j) 

 

(k) 

 

(l) 

Fig. 2. 7 Effect of various noises on ECG signal, (a) powerline interference, (b) Power spectral density of 

powerline interference corrupted ECG signal, (c) electrode contact noise, (d) Power spectral density of electrode 

contact noise corrupted ECG signal (e) motion artefacts, (f) Power spectral density of motion artefact corrupted 

ECG signal (g) muscle contraction, (h) Power spectral density of muscle contraction corrupted ECG signal (i) 

baseline drift, (j) Power spectral density of baseline drift corrupted ECG signal, (k) instrumentation noise, and (l) 

Power spectral density of instrumentation corrupted ECG signal  

5) Baseline Drift: Baseline drift is a form of noise that occurs mostly due to the respiration of 

the subject, resulting in noise in the frequency range of 0.15 - 0.3 Hz in the ECG signal. The 

effect of baseline drift on an ECG signal is shown in Fig. 2.7 (i). The power spectral density of 

the baseline drift corrupted ECG signal is shown in Fig. 2.7 (j). 

6) Instrumentation Noise: Instrumentation noise is due to the electrical nature of the ECG signal. 

An ECG signal is prone to noise due to interference from other electronic equipment due to 
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improper shielding. An ECG signal corrupted with instrumentation noise is shown in Fig. 2.7 

(k). The power spectral density of the muscle contraction corrupted ECG signal is shown in Fig. 

2.7 (l). 
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CHAPTER 3 

LITERATURE SURVEY 

Recent developments in health monitoring and assisting technologies like cardiac pacemakers 

have paved paths for less complex and cost-effective implantation practices and procedures. The 

protracted battery durability, enhanced device care, and security, better and reliable clinical 

results and conclusions have made these devices much dependable. The present study is a review 

of such enriching contributions and innovative studies done recently and in the past. 

3.1 ALGORITHMIC STRUCTURES OF DIFFERENT ECG DETECTION AND DATA 

COMPRESSION TECHNIQUES 

In the last few decades, rapid growth in the field of cardiac pacemakers can be attributed to 

biomedical signal processing algorithms and CMOS IC design. The circuit design efforts of 

biomedical CMOS ICs paved the path to implement complex signal analytical algorithms which 

can more accurately detect ECG signal features. Various approaches in the literature presented 

methods to increase the accuracy of wave detection, methods to increase the efficiency of the 

wave detection algorithms, and to reduce the effect of various noises present in an ECG signal.  

Pan et al. [20] developed the first real-time QRS-complex detection algorithm based on time-

domain analysis by using ECG signal as input from Massachusetts Institute of Technology-

Boston's Beth Israel Hospital (MIT-BIH) arrhythmia database [21]. ECG signals are de-noised 

using bandpass filters, realized by using cascade combinations of lowpass and highpass filters. 

The fiducial points; P-wave, QRS-complex, and T-wave are detected by finding the maximum 

value of the square of the slope of the denoised signal. The primary issue concerned with the 

time domain-based algorithm is that, extracting ECG signals by removing noises using a 

bandpass filter is not efficient and degrades the detection accuracy. Approaches based on ECG 

morphology [22–26], time domain [27], time-frequency domain [28-45] and genetic algorithm 

[46-50] are some ECG signal detection techniques which provide high detection accuracy. 

Morphology-based method for ECG signal detection uses approaches based on artificial neural 

networks. Time-frequency domain-based ECG signal detection methods use approaches based 

on wavelet transform, filter banks, and nonlinear transform. 
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Table 3. 1: Comparison of different published ECG detection algorithms 

Method Algorithm Technique 
Hardware 

Complexity 

Detection 

Performance 

Time-domain Filtering 

Bandpass filtering 

Simple 96% - 98% Digital filtering 

Adaptive filtering 

Derivative 

based 
- 

First derivative 

Medium 95%-97% The first and 

second derivative 

ECG 

morphology 

Artificial neural 

network 

Artificial neural 

network 
Complex 99% 

Time-

frequency 

Domain 

Hilbert transform Hilbert transform Complex 95% 

Empirical mode 

decomposition 

Empirical mode 

decomposition 
Complex 95% - 98% 

Wavelet transform 

Haar  

Medium < 99% 

Symlet  

Biorthogonal  

Reverse- 

Biorthogonal  

Combined 

Algorithm 

Wavelet transform 

+ genetic 

algorithm 

- Complex ~99.99% 

 

Further, a combination of techniques like wavelet transform and genetic algorithm are also used 

to improve ECG signal detection accuracy [51-52]. A significant amount of work is published 

in the fields related to ECG signal detection uses techniques based on ECG signal enhancement 

[53–56] and pattern classification [57–62]. An overview of some of these approaches is 

presented in [63-65]. Various ECG detection algorithms are summarized in Table 3.1 [29]. As 

shown in Table 3.1, wavelet-based ECG signal detection algorithms provide a detection 

accuracy higher than 99% with a medium hardware complexity when compared to other 
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techniques. Thus, wavelet transform based ECG signal detection technique is considered as one 

of the most efficient techniques [29] and further developed in this work. 

 

(a) 

 

(b) 

Fig. 3. 1 (a) Block diagram of generalized likelihood ratio test (GLRT) based ECG detector, (b) Block diagram 

of QRS-complex detector 

 

Fig. 3. 2 The dyadic wavelet transform based filter bank 

Rodrigues et al. [66] introduced the digital implementation of a wavelet-based QRS-complex 

detector suitable for cardiac pacemakers. The proposed cardiac pacemaker in [66] uses a wavelet 
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decomposer and a QRS-complex detector, as shown in Fig. 3.1 (a) [66]. QRS-complex detection 

block which includes a generalized likelihood ratio test (GLRT) [67] and threshold function is 

shown in Fig. 3.1 (b).  

Dyadic wavelet transform based filter bank decomposes the input ECG signal into two sub-

bands output, namely monophasic and biphasic. The advantage of dyadic wavelet transform is 

due to its low complexity as it uses undecimated lowpass and highpass filter [68, 69]. Wavelet 

decomposer consists of a dyadic wavelet transform based filter bank, as shown in Fig. 3.2 [68], 

and QRS detection block that includes a GLRT [67] and threshold function. Dyadic wavelet 

transform based filter bank decomposes the ECG signal into sub-bands with two outputs, 

namely monophasic and biphasic. The advantage of dyadic wavelet transform is due to its low 

complexity as it uses undecimated lowpass and highpass filter pairs [68, 69]. 

Symmetric and asymmetric wavelet filter banks used in a dyadic wavelet transform are 

mathematically expressed using Eq. (3.1), and Eq. (3.2). 

 ( ) 1 2 31 3 3H z z z z− − −= + + +   (3.1) 

 ( ) 11G z z−= +   (3.2) 

Here, H(z) and G(z) are transfer functions of lowpass and highpass filter, respectively. 

The noise level in the first filter output is determined by using a noise detector. The output of 

the wavelet filter bank is fed to QRS-complex detector, which in turn estimates the heartbeat 

rate. GLRT determines the presence of a QRS-complex based on the test computations using 

Eq. (3.3) 

 ( ) ( ) ( ) ( )
1T T TT a x a M M M x a

−
=   (3.3) 

Here, x(a) is input to the wavelet filter bank, M is a linear combination matrix of representative 

functions. The major drawback of the GLRT based approach is that the QRS-complex detector 

requires more power compared to other existing techniques and results in low detection 

accuracy. The drawbacks in [66] have been overcome by Min et al. [70]. In [70], multiscale 

product-based wavelet transforms using soft threshold is used to develop decimator architecture-

based ECG signal detector for low-power implantable cardiac pacemaker. The use of 
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multiscaled product algorithm leads to considerable power reduction in hardware 

implementation, but QRS-complex detection accuracy is reduced when compared to [66]. 

Dyadic wavelet transform has low computational complexity, thus considered as most suitable 

to implement in an ECG signal detector [71]. 

 

(a) 

 

(b) 

Fig. 3. 3 (a) Decimator based wavelet filter bank. (b) Undecimator based wavelet filter bank 

 

Fig. 3. 4 Multi-scaled product algorithm-based ECG detector  

Wavelet filter bank architectures are of two types: undecimator and decimator based. 

Undecimator architecture has the advantage of translation invariance. Translation invariance is 
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achieved by keeping same sampling rate (frequency) in all decomposition levels. The main 

disadvantage of undecimator-based architecture is that they require a constant clock and a large 

number of registers. The register count in an undecimator architecture is reduced by using a 

decimator based wavelet filter bank architecture. However, decimator based architecture can 

only be implemented by using a limited set of wavelet functions [72]. The architectures of 

decimator and un-decimator-based wavelet filter bank are shown in Fig. 3.3 [70].  

Soft threshold algorithms [73] are used to boost the detection accuracy of the QRS-complex. 

Block diagram of a wavelet transform based ECG signal detector is shown in Fig. 3.4 [70]. 

Wavelet transform based QRS-complex detection approach requires one multiplier and two 

multiplexers while GLRT based QRS-complex detection requires forty-five adders and six 

multipliers. Eq. (3.4) expresses multiscaled product of wavelet filter bank output shown in Fig. 

3.5 (a) [70]. Here, i is a subset of wavelet filter bank output [74, 75]. 

 i i

i

MP WF=   (3.4) 

Here, MPi and WFi, respectively, are the output of multi-scaled product algorithm and wavelet 

coefficients. The soft-threshold algorithm, as shown in Fig. 3.5 (b) [70], requires a smaller 

number of multiplication operations when compared to the hard threshold, thus resulting in a 

significant reduction in hardware complexity and power consumption. Unlike the fixed 

threshold value in the hard threshold algorithm, a soft threshold algorithm uses a variable 

threshold, which increases the probability to detect QRS-complex [73]. 

              

(a)                                                                            (b) 

Fig. 3. 5 (a) Multi-Scaled product algorithm. (b) Soft-threshold algorithm 

The major concern with a soft threshold algorithm is the requirement of add and shift multiplier 

for signal multiplication, which requires more hardware and processing time. As shown in Fig. 
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3.6, Bhavtosh et al. [76] replaced add and shift multiplier in [73] with booth multiplier to reduce 

the ECG processing time. Use of booth multiplier reduces the complexity and overall delay. 

 

Fig. 3. 6 Booth multiplier-based ECG detector 

 

Fig. 3. 7 Block diagram representation of ECG detection flow 

Using a booth multiplier instead of a conventional add shift multiplier for multiplication 

operation increases the complexity of multi-scaled product block. Wang et al. [77] proposed a 

low-cost application-specific integrated circuit (ASIC) ECG signal detector for real-time 

analysis. Different ASIC designs are presented in [78–82], and one of them is embedded in a 

biomedical system for ECG signal detection [82]. The basic ECG signal detection algorithm 

contains six steps. The signal processing flow of an ECG signal detection is shown in Fig. 3.7 

[83]. Basic array structure used for filter design and processing unit of an ECG signal detector 

using ASIC is shown in Fig. 3.8 [77] and Fig. 3.9 [77], respectively. A bandpass filter is used 

to reduce the effect of various noises [84]. Eq. (3.5) and Eq.(3.6) gives the differential equations 

of a lowpass filter and a highpass filter, respectively. 
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 ( ) ( ) ( ) ( ) ( ) ( )y aT =2y aT-T -y aT-2T +x aT -2x aT-6T +x aT-12T   (3.5) 

 ( ) ( ) ( ) ( ) ( ) ( )y aT = x aT-16T - 1/32 y aT-T +x aT -x aT-32T     (3.6) 

 

Fig. 3. 8 Basic array structure used for filter design 

 

(* reg: register, +: adder, <<: Comparator) 

Fig. 3. 9 Schematic representation of processing unit for ECG detection in ASIC 

ECG signal is differentiated by passing it through a bandpass filter. After the differentiation 

stage, the slope information of an ECG signal is not appropriate hence, the output is squared at 

each point. Furthermore, a moving window average produces a signal containing the 

information of the slope as well as the width of the QRS-complex. 
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Difference equations of derivative, squaring, and moving window average are as given by Eq. 

(3.7), Eq. (3.8), and Eq. (3.9), respectively. 

 ( ) ( ) ( ) ( ) ( )
1

y aT = 2x aT +x aT-T -x aT-3T -2x aT-4T
8

 
    

 
  (3.7) 

 ( ) ( )
2

y aT = x aT     (3.8) 

 ( ) ( )( ) ( )( ) ( )
1

y aT = x aT- A-1 T +x aT- A-2 T +.....+x aT
A

 
    

 
  (3.9) 

Here, A is the number of samples of the moving window, and a is a constant. 

Filters circuits shown in Fig. 3.7 are represented using Eq. (3.10). 
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  (3.10) 

Here, H(z-1) is the transfer function, and pi and qi are real coefficients. To reduce hardware cost, 

systolic array based digital filters, which also reduce noise, are used [85]. The systolic array 

based approach is not preferred because systolic architectures degrade the QRS-complex 

detection performance. 

Many body sensor networks (BSN) based approaches are developed for wearable systems. A 

physiological measurement device is a fundamental component in a telemonitoring and remote 

healthcare system. Baek et al. [86] proposed a healthcare chair which provides noninvasive 

measurement of various biosignals, including ECG. The proposed healthcare chair uses 

capacitively coupled electrodes to continuously measure the ECG signal. Vuorela et al. [87] 

proposed a device that can continuously measure the ECG signal in a BSN environment. 

Vuorela et al. introduced a portable long-term physiological signal recorder to measure 

bioimpedance, electrocardiography, and user activity. The main drawback of the physiological 

signal recorder is the inability to store any recorded signals due to lack of memory. As 

demonstrated by Yang et al. [88], a low-power biopatch based design with flexible electrodes 

suits portable health monitoring systems. However, the system in [88] lacks a wireless 

communication feature. A complete BSN system for ECG signal measurement has been 
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proposed by Tsai et al. [89]. High power consumption and constrained energy supply (battery) 

limits the long-term usage of the proposed portable ECG signal measurement system. A 25-

electrode wearable cardiac monitoring system featuring a complete SoC system with wireless 

transmission capability of ECG signals is demonstrated by Yan et al. [90]. 

A fully integrated SoC based three lead ECG for wireless BSN applications is proposed by 

Khayatzadeh et al. [91]. The SoC consists of two-channel ECG frontend with successive 

approximation register analog-to-digital converter (SAR-ADC), microcontroller, static random-

access memory (SRAM), and a medical implantation communication service band RF-

transceiver. The ultra-low-power feature is achieved with the help of a low leakage sub-

threshold SRAM and an energy-efficient microcontroller. Lee et al. [92] proposed a biological 

ECG acquisition and classification system for BSN. Block diagram of a low power wireless 

biosignal acquisition and classification system is shown in Fig. 3.10 [92]. 

 

Fig. 3. 10 Block diagram of a low power wireless biosignal acquisition and classification system 

A low-power wireless biosignal acquisition and classification system requires a biosignal 

processor (BSP), a low power super-regenerative on-off keying (OOK) transceiver, and a digital 
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signal processor. The BSP circuit consists of a chopper-based continuous-time amplifier 

(CBCTA) shown in Fig. 3.11 [92], and a highpass sigma-delta modulator (HPSDM) shown in 

Fig. 3.12 [92]. If the resolution of the transceiver is greater than twelve bits, the resultant circuit 

provides low system complexity thus reducing the power consumption. In biosignal processing, 

noise reduction is a big challenge. CBCTA removes commonly present thermal noise and 

Flicker noise in biosignals. 

 

Fig. 3. 11 Chopper-based continuous-time amplifier  

CBCTA can be used either as an amplifier and a band-pass filter [93]. Transfer function and 

characteristics of CBCTA are given by Eq. (3.11) through Eq. (3.15). 
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Here RF is a feedback resistor. AM is mid-band gain. Pm1 and Pm2 are the transconductances of 

the input stage, and CF is the feedback capacitor. 

 

Fig. 3. 12 Highpass sigma-delta modulator 

By using different sets of capacitances CD, the CBCTA can be used in gain tunable applications. 

Due to the high resolution of sigma-delta modulator (SDM), it is broadly used in low-frequency 

applications. Fig. 3.12 shows system architecture of a highpass SDM(HPSDM) which is chosen 

as an ADC in the BSP circuit. A highpass filter is obtained by replacing z with –z and by shifting 

central frequency from 0 to 
𝑓𝑠

2
 in a lowpass filter. Stability of HPSDM is the same as that of a 

lowpass SDM [94]. Transfer function at the summation points a1, a2, and a3 are given by Eq. 

(3.16) to Eq. (3.18): 

 ( )
1

1
1 1
( )

1
a

g z
H z g p

z

−

−
= −

+
   (3.16) 

 ( )
( )

( ) ( )

1 2
1 2

2 3
1 1 1

1 2 3

1
( )

1 1
a

g g z z
H z g p

z b g g z z

− −

− − −

+
= −

+ + +

  (3.17) 

 ( )
( ) ( )

3
1 2 3

3 3
1 1 2

1 2 3

( )

1 1
a

g g g z
H z g p

z b g g z z

−

− − −
= −

+ + +

  (3.18) 

Here, g is input, p is error and g1, g2, g3 are the constants. The switched-capacitor circuit shown 

in Fig. 3.13 [93], can be used to realize a first-order highpass integrator and Eq. (3.19) gives its 

transfer function. 
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Here CH = 2CI. 

 

Fig. 3. 13 Schematic of the first-order highpass integrator  

Block diagram of a wavelet transform processor and three stages of a Haar wavelet transform 

realization are shown in Fig. 3.14 (a) and Fig. 3.14 (b), respectively [92]. The DWT function 

defined in [95-97] is given by Eq. (3.20) and Eq. (3.21): 

 ( ) ( ) ( )
0, 0,

1
j r j r

r

W n r S n r
M

 = −   (3.20) 

 ( ) ( ) ( )
, ,

1
j r j r

r

W n r S n r
M

 = −   (3.21) 

Here, S(n) is input signal, ϕj0,r(r) and ψj,r(r) are the impulse responses of scaling function and 

wavelet function, j0 and j are the scale-0 of the wavelet decomposition and scale-1 of wavelet 

transform, M is dilation equal to one in this work and r is the number of sample points. 

Considering the tradeoff between hardware cost and power consumption, the Haar wavelet 

transform is found suitable to implement the wavelet transform processor circuit. The transfer 

function of scales is given by Eq. (3.22) and Eq. (3.23). 
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(a) 

 

(b) 

Fig. 3. 14 (a) Block diagram of the wavelet transform processor, (b) Block diagram of three stages of Haar 

wavelet 

Here, i is the scale number. Compared to the previously designed beat-detection algorithms 

discussed in [64] and [65], this algorithm uses a sixth-order DWT [98]. A typical wearable ECG 
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monitoring system that can process and enable wireless transmission of ECG signals is shown 

in Fig. 3.15 [104]. The main challenge with the development of these devices is their multi-

functional ability and ease of usage. During the last few years, many ECG signal detection 

algorithms with low power consumption are proposed [99-102]. 

 

Fig. 3. 15 Block diagram of a wearable ECG monitoring system 

Several integrated lossy and lossless ECG compression techniques are presented in [103, 104]. 

Using different approaches for ECG signal detection and data compression may increase the 

overall system complexity. An approach that combines ECG signal detection and lossless data 

compression used in wearable ECG detector are proposed by Deepu et al. [104]. The central 

idea behind this approach is to use a single algorithm for ECG signal detection and data 

compression instead of using two different algorithms. Average computational complexity per 

task is lowered by sharing the computational load between two different operations. Reports on 

many forward prediction based algorithms used for ECG signal detection are discussed in [105-

107] in which a forward predictor is used to estimate current sample x(a) of an ECG signal 

which is given by Eq. (3.24). 

 ( ) ( )
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m
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x a h x a k
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= −   (3.24) 
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Here, 𝑥̂ (𝑎) is the estimation of ECG signal x(a) and hk is the predictor coefficient. The 

prediction error e(a), the difference between the actual ECG signal x(a) and its estimation 𝑥̂ (𝑎)  

is given by Eq. (3.25). 

 ( ) ( ) ( )e a x a x a= −   (3.25) 

Combined ECG signal detection and lossless compression technique proposed in [104] is shown 

in Fig. 3.16. 

 

Fig. 3. 16 Block diagram of combine ECG detection and lossless compression Technique 

A linear predictor is used for the estimation of current samples of ECG signal x(a) based on 

previous m samples. By subtracting the estimated value from the actual value, instantaneous 

prediction error e(a) is calculated and used to identify the QRS-complex location. e(a) is 

encoded and packaged to get a compressed lossless representation of original data for wireless 

transmission. The adaptive linear predictor which self-adjusts the output based on the statistics 

of the incoming signal is shown in Fig. 3.17 [104]. 

 

Fig. 3. 17 Adaptive linear predictor 

The predictor is constructed with the help of a tapped delay line structure. Least mean square 

(LMS) algorithm and its variants were used for updating predictor weights and are described by 

Eq. (3.26), Eq. (3.27), Eq. (3.28), and Eq. (3.29) [108]: 
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 ( ) ( ) ( ) ( )1LMS h a h a e a x a+ = +   (3.26) 

 ( ) ( ) ( )
( )

( )
2

1
x a

NLMS h a h a e a
x a

+ = +   (3.27) 

 ( ) ( ) ( )( ) ( )1 sgnSLMS h a h a e a x a+ = +   (3.28) 

 ( ) ( ) ( )( ) ( )( )1 sgnSSLMS h a h a e a sgn x a+ = +   (3.29) 

Here, h(a) is current predictor coefficient, h(a +1) is updated predictor coefficient and μ, β are 

the step sizes. Based on the performance and hardware complexity, sign-sign least mean square 

(SSLMS), predictor-based algorithms are chosen [109].  

 

Fig. 3. 18 Block diagram representation of a QRS-complex detector using SSLMS predictor 

Block diagram of a QRS-complex detector using SSLMS predictor is shown in Fig. 3.18 [104]. 

A lossless data compression technique using SSLMS predictor is shown in Fig. 3.19 [104]. The 

major drawback of lossless compression using SSLMS is its hardware complexity.  

 

Fig. 3. 19 Block diagram of a lossless data compression Technique using SSLMS predictor 

A combined biometric recognition-based ECG signal classification and feature extraction 

design for single-lead ECG is proposed by Gutta et al. [110]. The focus is on biometric 
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recognition using a single-lead ECG signal as it is easy to acquire in many situations [111]. A 

real-time QRS-complex detector based on redundant discrete wavelet transform is presented by 

Junior et al. [112]. 

Devising a self-effacing cardiac monitoring device is the first stepping stone. Being cost-

effective, with a supporting battery, prolonged usage is one of the essential challenges while 

designing wearable devices. Low power consumption and less hardware complexity are the two 

crucial attributes of mobile ECG equipment. This sets in the place for integration of inbuilt 

signal acquisition and required conversion of massive data generated through wearable devices. 

The seamless power supply sourcing through a wireless transceiver makes it imperative to 

locally carry out the initial ECG analysis related tasks like QRS-complex detection and R-R 

interval estimation. The local estimation facilities like ECG signal transmission can be activated 

only on the need and requirement based on heart rhythm analysis. The massive ECG signal data 

sets acquired through the continuous watch, and track setup demands a strong need for reliable 

local storage or needs a data transmission to a storage gateway. Such communication of data 

exerts a need for continuous battery source, which increases the running cost of such devices. 

Alliance of ECG chip with a microcontroller enabling burst transfer of ECG signal may increase 

the cost as some storage class memory needs to be integrated on-chip. A comprehensive review 

of existing ECG signal denoising and QRS-complex detection is reported in [117]. Increasing 

ECG signal detection accuracy with the help of sophisticated signal processing techniques is the 

primary approach. Low power implementation of many ECG signal detection and data 

compression techniques are reported in [113-116]. 

3.2 DATABASES TO BENCHMARK ECG DETECTION ALGORITHM 

There are plenty of ECG databases available to evaluate the performance of ECG detection 

algorithms. Some of the standard ECG databases include MIT-BIH arrhythmia database, the 

American heart association (AHA) database, medical information mart for intensive care 

(MIMIC) database, Ann Arbor electrogram libraries, long-term ST (LTST) database, and 

common standards for electrocardiography (CSE) database. Their main characteristics are 

summarized in Table 3.2. 
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Table 3.2: Characteristics of the ECG databases 

ECG Database 
Number of 

Recordings 

Sampling 

Frequency (Hz) 

Duration 

(min.) 
Status 

MITDB 48 360 30 Open 

QTDB 105 250 15 Open 

EDB 90 250 120 Open 

TWADB 100 500 2 Open 

The most frequently used MIT-BIH arrhythmia database contains forty-eight half-hour excerpts 

of two-channel ambulatory ECG recordings with 11-bit resolution over a 10-mV range at a 

sampling rate of 360 Hz. Out of the possible four thousand ECG signals which span a twenty-

four-hour data of ambulatory ECG recordings, only twenty-five recordings have a less common 

arrhythmia, and the remaining are chosen randomly. MIT-BIH database has 116137 QRS-

complexes. AHA database [118] used to evaluate detection of ventricular arrhythmia has 155 

recordings of ambulatory ECG with 2.5 h recordings of unannotated signal followed by thirty 

minutes of annotated ECG with a 12-bit resolution over a 20-mV range at a sampling rate of 

250 Hz. For the representation of different levels of ectopic excitation, records are arranged into 

eight groups. For the evaluation of diagnostic ECG analyzer, CSE database [119] contains 1000 

multi-lead recordings is used. Electrogram libraries database from Ann Arbor contains a 

collection of more than 800 intracardiac electrograms and surface ECGs [120]. This database is 

valuable for the evaluation of algorithms designed for implantable cardiac devices. The MIMIC 

database introduced in 2001 provides ECG recordings of ICU patients [121] and contains 72 

recordings recorded at 500 samples/s with 12-bit precision and negligible jitter. The LTST 

database [122] introduced in 2001 is used to develop an evaluation of ischemic and non-

ischemic ST event detection algorithms and contains eighty six lengthy ECG recordings of 

eighty human objects. 

Some other libraries like European ST-T database [123], Massachusetts general hospital MGH 

database [124], QT database [125], and improving control of patient status in critical care 

(IMPROVE) data library are used to evaluate the detection and classification algorithms. The 

ST-T database contains ninety recordings and used to evaluate ECG devices which analyze ST 

waves and T-waves. ECG records in all the databases mentioned above contain information 
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about the occurrences of different artifacts, namely regular heartbeat, premature ventricular 

contraction (PVC), and changes in signal quality. These databases provide a good testing ground 

because they contain a large number of beats, various noises, and different pathological states. 

3.3 EVALUATION AND COMPARISON OF ECG DETECTION AND DATA 

COMPRESSION TECHNIQUES 

Any recorded ECG signal consists of non-sinus beats and different noises, namely power-line 

interface, baseline drift, to name a few. To remove noises from an ECG signal, many approaches 

which include time domain-based, ECG morphology-based, time-frequency domain-based, and 

some combined methods are proposed in the literature [1–124]. As discussed in Table 3.1, 

wavelet transform based ECG signal detection algorithms are considered to be more suitable 

when compared to other reported techniques. Based on wavelet transform, different algorithms 

for ECG signal detection are discussed in the literature. However, the primary issue is with the 

selection of proper wavelet transform, which is suitable for ECG signal detection. From the 

available literature, no suitable reason behind the selection of wavelet transform for ECG signal 

detection is provided. For example, Rodrigues et al. [66] used the wavelet transform based filter 

bank for ECG signal denoising, but no further reason for selecting a particular wavelet transform 

is made. Martinez et al. [69], Min et al. [70], Mahmoodabadi et al. [126] used wavelet transform 

for ECG signal denoising, but no information on wavelet selection is disclosed. The 

performance of an ECG detection algorithm is evaluated by using six statistical metrics of the 

signal for the beat to beat [126]. The statistical metrics to evaluate the performance of an ECG 

signal detection algorithm are sensitivity (Se), specificity (Sp), positive predictivity (+P), area 

under the curve (AUC), receiver operating characteristics (ROC), detection error-rate (DER), 

and overall accuracy (ACC). The mathematical relations that define the above said metrics are 

given in Eq. (3.30), Eq. (3.31), Eq. (3.32), Eq. (3.33), and Eq. (3.34), respectively. 
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 ( )% *100
FP FN
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Total QRS complexes

+
=   (3.34) 

Here, TP is the number of true positive detection (QRS-complexes detected), FN is the number 

of false negatives (QRS-complexes that are not detected by the detector), FP is the number of 

false positives (a complex wrongly detected as a QRS-complex). The robustness of the ECG 

signal detector on its noise performance is determined by computing Signal-to-Noise Ratio 

(SNR) as given by Eq. (3.35). 

 1010log
Signal energy

SNR
Noiseenergy

 
=  

 
  (3.35) 

Table 3.3: Comparison of different ECG detection algorithms 

References ECG Detection  
Total 

Beats 

Numerical 

Efficiency 

Se 

(%) 

+P 

(%) 

DER 

(%) 

Liu at al. [12] Wavelet transform 109492 Medium  99.80 99.86 0.35 

Pan and 

Tompkins [20]  

Bandpass filter + filter 

derivative + squaring + 

moving average  

116137 Medium 99.76 99.56 NR 

Li et al. [28] Wavelet transform 104182 Medium  99.89 99.94 0.17 

Afonso et al. 

[30] 
Filter bank 90909 Low 99.59 99.56 NR 

Zidelmal et al. 

[44]  

S-transform + Shannon 

energy 
108494 Medium  99.84 99.91 0.25 

Poli et al. [50] NR 109968 High 99.60 99.50 0.90 

Satija et al. 

[61] 

CEEMD + decision 

rules 
14068 Medium  99.12 98.56 NR 

Rodrigues et 

al. [66] 
Wavelet transform NR Medium 99.00 NR 0.4 
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References ECG Detection  
Total 

Beats 

Numerical 

Efficiency 

Se 

(%) 

+P 

(%) 

DER 

(%) 

Martinez et al. 

[69] 
Wavelet transform 109428 Medium 99.80 99.86 0.34 

Min et al. [70] 
Dyadic wavelet 

transform 
109496 Medium 99.80 99.86 0.35 

Wang et al. 

[77]  
Pan and Tompkins 4509 Low 95.65 99.36 NR 

Zou et al. [100]  Wavelet transform NR High 99.72 99.49 NR 

Deepu et al. 

[104] 

Modified Pan and 

Tompkins 
109508 Medium 99.64 99.81 NR 

Mahmoodabadi 

et al. [126] 
Wavelet transform 43438 Medium  94.52 94.30 NR 

Faezipour et al. 

[127] 

Modified Pan and 

Tompkins 
104363 medium 99.80 99.79 NR 

Ravanshad et 

al. [129] 
LC-ADC 109428 Medium 99.89 99.40 1.71 

Suarez et al. 

[130] 
Geometrical matching 60431 Medium  97.94 99.13 2.92 

Chen at al. 

[131] 

Moving average + 

wavelet transform 
102125 High  99.35 99.48 0.97 

Chouhan and 

Mehta et al. 

[132] 

Digital filters + 

threshold 
102654 Medium 99.69 99.88 NR 

Bahoura et al. 

[133] 
Wavelet transform 109809 Medium  99.83 99.88 0.29 

Ghaffari et al. 

[134] 

Continuous wavelet 

transform 
109937 Medium 99.91 99.72 NR 

Pan et al. [135] 
Biorthogonal spline 

wavelet transform 
102934 Medium  99.72 NR NR 
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References ECG Detection  
Total 

Beats 

Numerical 

Efficiency 

Se 

(%) 

+P 

(%) 

DER 

(%) 

Benmalek and 

Charef [136] 

Digital fractional order 

operators 
107632 medium 99.86 99.86 NR 

Raj et al. [137] 
DCT based DOST + 

PSO optimized SVM 
86113 High  99.82 99.82 1.18 

Nayak et al. 

[138] 

Digital differentiator + 

GMBO 
109494 High  99.92 99.92 0.15 

Jain et al. [139] PSO optimisation 109494 high 99.75 99.83 0.42 

Chairugi et al. 

[140] 

Bandpass filter + first 

derivative + multiple 

thresholds 

109494 High  99.76 99.81 NR 

Elgendi et al. 

[141] 

TERMA + modified Pan 

and Tompkins 
109775 Medium  99.78 99.92 NR 

Tang et al. 

[142] 

Parallel delta modulator 

+ local maximum point  
109966 Minimum  99.17 99.55 1.28 

Tang et al. 

[142] 

Parallel delta modulator 

+ local maximum point 

+ local minimum point 

109966 Minimum  99.17 99.55 1.28 

Hou et al. 

[143] 

phase space 

reconstruction + box-

scoring calculation 

110008 High  99.32 99.45 NR 

Adnane et al. 

[144] 

Modified Pan and 

Tompkins 
109494 Medium  99.77 99.64 0.59 

Qin et al. [145] 

Wavelet transform + 

signal monitoring + 

local maxima location + 

adaptive threshold 

selection 

86892 Medium   99.83 99.90 NR 

Thungtong et 

al. [146]   
Wavelet transform  83292 Medium  99.63 99.78 0.59 
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*NR: Not reported, DCT: discrete cosine transform, SVM: support vector machine, PSO: 

particle swarm optimization, GMBO: gases Brownian motion optimization, CEEMD: modified 

ensemble empirical mode decomposition, TERMA: two-event related moving averages. 

Various ECG signal detection algorithms found in the literature are listed in Table 3.3. Most of 

the works does not mention the reason for selecting a particular wavelet transform. In Table 3.3, 

various ECG detection algorithms are compared for their numerical efficiency, Se, +P, DER. 

The proposed algorithm is evaluated and compared with existing algorithms to find the 

suitability of proposed algorithm for ECG signal detection. The performance of ECG signal 

detection algorithms described in the literature is not assessed for some parameters like 

numerical efficiency, parameter choice, and robustness to noise. “The developed algorithm may 

have a large number of iterations, parameters to adjust, features extracted, or classification steps. 

It is desirable to provide numerically efficient (simple, fast, and fewer calculations) algorithms. 

Of course, computers have become very fast, and therefore numerical efficiency is less 

important than it used to be. However, if a simple and fast algorithm can achieve good results, 

there is no need for more complex algorithms. In particular, when the algorithm is used online 

(in a slightly modified form from the offline version) in a mobile phone embedded system, 

numerical efficiency is still relevant [64]”. Some of the ECG signal detection algorithms are not 

verified using ECG data from the standard databases. There are many algorithms described in 

the literature with a very high detection performance. The main drawback of these algorithms 

is that the high detection performance of the algorithm is achieved by verifying with very limited 

datasets. For example, in [127], Faezipour et al. claim an accuracy of 99.59% by testing the 

algorithm only on very limited ECG data. For example, the algorithm is not verified the most 

noisy ECG records 207 and 208 from the MIT-BIH arrhythmia database, and therefore, their 

algorithm may not be superior in its performance. 

Furthermore, there are many other works which report high beat detection accuracy and 

classification 99.44% and 97.25%, (Lee et al. [92]) respectively but no information on the data 

set size is provided. Zou et al. [100] claim an accuracy of 99.72%, but the performance of the 

algorithm is not reported. It is required to verify the designed algorithm with ECG record 100 

and ECG record 108 of the MIT-BIH arrhythmia database. In the ECG record 100, QRS-

complexes are very clear and easy to determine. Whereas, it is tough to determine the QRS-
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complexes in ECG record 108. Detection problems in an ECG signal arise due to noise signals 

like baseline drift and powerline interface, small amplitude QRS-complexes, pathological 

signals and sudden level change of the QRS-complex.  

In Table 3.3, Se, +P, DER are listed from various works found in the literature. The state-of-the 

art requirement for Se is greater than 99%, +P is greater than 99%, and a nearly zero DER. As 

the leading cause of death in modern society [104], cardiac diseases have drawn significant 

attention. Hence, long-term monitoring of ECG is one of the primary requirements for the 

patients with cardiac diseases. Previously discussed algorithms are used only for ECG detection. 

Hence, many hardware systems are proposed to record ECG signal and QRS-complex detection. 

The implementation of such a hardware system should be energy efficient, portable, and record 

an ECG with high signal quality to aid accurate medical diagnosis.  

The performance of any developed ECG signal compression technique is evaluated using seven 

statistical metrics by comparing the signal for the beat to beat [147]. The statistical metrics are 

compression ratio (CR), space-saving (SS), compression gain (Cg), maximum absolute error 

(MAE), quality score, peak signal to noise ratio (PSNR), and percentage root-mean-square 

difference (PRD). The relations that define the above said metrics are listed in Eq. (3.36), Eq. 

(3.37), Eq. (3.38), Eq. (3.39) Eq. (3.40), Eq. (3.41), Eq. (3.42), and Eq. (3.43), respectively. 
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Table 3.4: Comparison of different published ECG data compression algorithms 

Method Algorithm 
Data 

Quality 

Computational 

Complexity 

Compression 

Performance 

Direct time-

domain 

methods 

Turning Point 

Lossy / near-

lossless 
Medium Medium 

Amplitude zone time 

epoch coding 

(AZTEC) 

Delta Coding 

Parameter 

extraction 

Linear prediction 

Near-

lossless or 

lossless 

Complex High 

Neural network 

Syntactic method 

Curvature based 

ECG signal 

compression 

Long-term 

prediction 

Hilbert transform Medium Medium  
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Transform 

methods 

Discrete cosine 

transform 

Near-

lossless 

Fast Fourier 

transform  

Discrete wavelet 

transform  

Hermite transform 

Walsh transform  

Combine 

methods 

Discrete wavelet 

transform + run-

length encoding 

Lossless Medium High 

 

Here, xi and yi are the original signal and reconstructed signal, respectively. 

To compress an ECG signal, many approaches based on direct time-domain approach, transform 

approach, parameter extraction, and some combined methods are proposed in the literature 

[147]. 

The main drawback of direct time domain-based ECG compression method is poor P-wave and 

T-wave fidelity and reconstruction capabilities (reconstructed signal represents the original 

signal with distortion). Hence, the performance of the ECG signal compression is degraded. To 

achieve high compression accuracy, algorithms based on the parameter extraction are proposed, 

but the major drawback with these approaches is their high computational complexity and power 

consumption. Transform based techniques are either lossy or near-lossless ECG compression 

methods. Combined algorithms like wavelet transform with run-length encoding have a high 

compression performance, medium computational complexity, and good fidelity. 

Based on the tradeoff between computational complexity and compression performance, as 

shown in Table 3.4, wavelet transform and run-length encoding based ECG compression 

algorithms are considered to be more suitable compared to other reported techniques. 
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The performance of ECG compression algorithms presented in the literature is not assessed for 

some statistical parameters like computational complexity, space-saving, parameter choice, and 

compression gain. Some of the ECG compression algorithms presented in the literature are not 

verified using ECG data from the standard database. 

Table 3.5: Comparison of different ECG compression algorithms 

References Compression 

Technique 

Records Used Performance 

Metrics 

Compression 

Performance 

Lossy ECG compression techniques 

Elgendi et 

al. [141] 

Decimating by a factor 

B/K 

48-records of MIT-

BIH arrhythmia 

database 

CR, PRD Medium  

Polania et 

al. [148] 

Simultaneous 

orthogonal matching 

pursuit 

Only one record of 

MIT-BIH 

arrhythmia database 

CR, PRD High 

Mamaghani

an et al. 

[149] 

Compressive sensing  48-records from 

MIT-BIH 

arrhythmia database 

CR, PRD Medium  

Mishra et al. 

[150] 

Wavelet transform MIT-BIH 

arrhythmia database 

CR, PRD Medium  

Ansari et al. 

[151] 

Non-uniform binary 

matrices 

NR CR, PRD High   

Casson et 

al. [152] 

Compressive sensing Only 3-records of 

MIT-BIH 

arrhythmia database 

CR, PRD Low  

Kumar et al. 

[153] 

Encoding with 

modified thresholding 

Only 4-records of 

MIT-BIH 

arrhythmia database 

CR, PRD High  

Chae et al. 

[154] 

Compressive sampling Only one record of 

MIT-BIH 

arrhythmia database 

CR, PRD Low  
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References Compression 

Technique 

Records Used Performance 

Metrics 

Compression 

Performance 

Polania et 

al. [155] 

Compressive sampling 

matching pursuit 

Only 11-records of 

MIT-BIH 

arrhythmia database 

CR, PRD High 

Manikandan 

et al. [156] 

Wavelet thresholding Only 2-records of 

MIT-BIH 

arrhythmia database 

and 10-records of 

qdheart PCG 

database  

CR, PRD, 

RMSE 

High 

Lin et al. 

[157] 

lossless and lossy 

direct compression 

design 

Only 10-records of 

MIT-BIH 

arrhythmia database 

CR, PRD High 

Lossless ECG compression techniques 

Chua et al. 

[102] 

Delta predictor/Rice 

Golomb coding 

NR CR, PRD LOW 

Chen et al. 

[103] 

Adaptive predictor/ 

Huffman coding 

NR CR, PRD Medium 

Deepu et al. 

[104] 

Adaptive predictor MIT-BIH 

arrhythmia database 

CR, PRD Medium 

Chen et al. 

[158] 

Simple 

predictor/Huffman 

coding 

NR CR, PRD Low 

Deepu et al. 

[159]  

Slope predictor/fixed-

length packaging 

NR CR, PRD Medium 

Capurro et 

al. [160] 

Universal coding + 

universal prediction + 

multivariate recursive 

least squares 

NR CR High 
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Tsai et al. 

[161] 

Adaptive linear 

prediction + content-

adaptive-Golomb-Rice 

coding + packing 

format 

24-records of MIT-

BIH arrhythmia 

database for lead V1 

and 24-records of 

MIT-BIH 

arrhythmia for lead 

V2 

CR High 

*NR: Not reported. 

Many ECG compression algorithms described in the literature show a high compression 

performance with a small number of QRS-complexes, as shown in Table 3.5. The main 

drawback of these algorithms is that the high compression performance of the algorithm is 

verified using only a few ECG samples. 

3.4 DISCUSSION: CHALLENGES AND GAPS 

Despite current development in ECG morphology analysis and fast and accurate heartbeat 

detectors, the use of these algorithms is limited to clinical practice due to the issues related to 

the hardware implementation of existing algorithms. Apart from business-related concerns and 

medical approvals, the focus is on related medical concerns. According to medical literature, 

normal heart rhythm must satisfy the following criterion [128]: Heartrate should lie between 60 

to 100 beats per minute [129-130], impulse speed must be normal, impulses must propagate 

throughout the normal conducting pathway, and origin of the electrical impulse must lie in the 

SA node [131]. 

Heartrate is one of the criteria to identify the behavior of a heart. With the help of heartrate 

variability analysis, substantial improvements are achieved in identifying the heart-related 

problems. Even though the heartrate is an important criterion, three other criteria of normal heart 

rhythm pose a significant impact on ECG signal morphology. For example, if the electrical 

impulse does not propagate through the normal conducting pathway, it may cause a short PR-

segment of ECG signal due to the deficiency of the AV node pause. If the origin of the electrical 

impulse does not lie in the SA node, then the QRS-complex may not occur exactly after one P-
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wave. Thus, any issues in collecting one region of ECG waveform affect the other parts of the 

ECG waveform. 

Most of the algorithms which detect QRS-complex are not suitable to detect P-wave and T-

wave simultaneously. P-wave indicates atrial related problems, whereas the shape of T-wave 

represents problems related to beat origin and re-polarization. Detection of these waves is 

problematic as their amplitude is too small and high attenuation. The amplitude of these waves 

decreases significantly when the ECG signal is filtered. Recent lifestyle changes are resulting 

in an issue named Acute Coronary Syndrome (ACS), which is a clinical syndrome. ST-segment 

is helpful in the detection of ACS [100]. However, there is no proper mechanism available to 

detect ST-segment. One of the most significant challenges with the ECG analysis is its biometric 

characteristic, meaning every person has a different ECG signal. 

Further, similar ECG signal [133], can be a result of a different medical condition, thus making 

ECG signal detection more difficult. Most of the researchers gathered around physionet.org (an 

online tool for ECG databases) are considering various challenges. As a result, some other 

databases might get developed so that the ECG signal analysis can become more realistic to 

benefit society. 

Many algorithms are proposed in the literature to compress ECG signal result in the reduction 

of the magnitude of transmitted ECG signals. Although, much used and dependable ECG 

compression techniques are complex and do not fit for wireless transmission. Appropriate 

compression methods have a directive for high energy consumption or low-compression rate. 

Thus, it is essential and vital to have a less complex, quicker, coherent, and cost-effective 

compression procedure fitting the extended ECG signals. Also, the ECG system experiences 

complications and difficulty with the integration of two definite approaches for QRS-complex 

detection and data compression. Hence, combined (a joint) technique for ECG signal detection 

and lossless data compression is required. 

3.5 SUMMARY 

In the present chapter, existing ECG signal denoising, ECG signal detection, and ECG 

compression algorithms are summarized. As found in the literature, it is straightforward to 
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achieve sensitivity and specificities of around 99% for online ECG detectors without significant 

computational efforts. These specifications may be suitable for clinical applications, but still, 

hide major problems that are present in the case of pathological signals. A satisfying solution 

for these challenges is yet to be found. Besides that, it is tough to compare and evaluate the 

results from various research groups because a large portion of algorithms present in the 

literature are not tested using standard databases. Long-term monitoring is beneficial for patients 

suffering from heart diseases. However, the systems that used for long-term monitoring have a 

limitation on energy consumption. An ECG monitoring system needs to communicate the 

extracted features to a server and provide a local response. Further, signals from moving patients 

(for example in an ambulance), abnormal signals have further scope for research. A portable 

long-term ECG monitoring system either needs local storage or needs a wireless data transfer 

system. The immediate need is to develop a combine system for both ECG detection as well as 

data transmission. 
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CHAPTER 4 

ECG SIGNAL DENOISING TECHNIQUES FOR CARDIAC 

PACEMAKER SYSTEMS 

The main reason for medical organizations to focus their research on cardiovascular diseases 

(CVD) and related problems is increasing worldwide mortality rates due to CVDs. 

Technological progress in cardiac function assessments has become the nucleus of all leading 

research studies in the area of CVDs [162]. Use of technologies in hospitals and medical 

facilities has undergone stupendous advancements, thereby changing the face of the traditional 

and regular cardiovascular-diagnosis. ECG analysis is the most commonly used clinical cardiac 

test [163]. ECG signals are the resultant of the heart’s electrical activity [164]. An ECG signal 

provides information on latent operation of the heart and its constituent events that occur and 

coexist with the succession of depolarization and repolarization of the atria and ventricles. Fig. 

4.1 [165] represents different ECG waves produced during a cardiac cycle. The QRS-complex 

is made up of two troughs, namely, ‘Q’ and ‘S’ and a sharp R-wave. The literature identifies a 

higher detection accuracy of three events, namely, P-wave, QRS-complex, and T-wave during 

an analysis period less than thirty minutes. 

 

Fig. 4. 1 Graphical representation of a typical ECG signal 



   

54 
 

Long duration ECG signals are monitored by connecting the electrodes of ECG recorder to a 

device that banks on the wireless transmission, considered as a fundamental requirement. The 

technique should be cost-effective, authentic, expandable, and capable of effectual patient 

tracking with a medical data management tool. Such a tool can facilitate tracking the health of 

many CVD patients to prevent critical heart failure and to provide rapid medical attention. A 

model of a wearable ECG monitoring system that can be used for the acquisition, processing, 

and wireless transmission of ECG data to monitor the health of a CVD subject is shown in Fig. 

4.2. 

 

Fig. 4. 2 A model of a wearable ECG monitoring system model 

The ECG monitoring system has three main functions, namely, ECG signal analysis, data 

compression, and wireless transmission. The ECG signal analysis is further divided into two 

parts, namely, ECG signal denoising and ECG signal detection. The methodology used to 

develop the proposed design is elucidated below. Combined ECG signal detection and data 

compression algorithms contain three building blocks, namely, pre-processing, wave detection, 

and data compression. One of the most important aspects of ECG signal processing is the 

removal of noises from the signals. In this chapter, different filter bank architectures based on 

wavelet transform are proposed to remove noise present in an ECG signal.  

4.1 ECG SIGNAL DENOISING 

Like any electrical signal, an ECG signal is also prone to noise [19] [132]. Various noise removal 

techniques namely, time-domain, time-frequency domain (wavelet transform), digital filtering, 

Kalman filtering, fractional calculus, empirical mode decomposition, and Fourier transform are 

used to remove noise from an ECG signal. Important metrics on which a suitable ECG signal 

denoising technique is selected are computational complexity, parameter choice, hardware 

requirements, and robustness to noise. Considering the tradeoff between the above-mentioned 
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statistical parameters as summarized in Table 3.1, wavelet transform based techniques are found 

to be most suitable for ECG denoising [65]. 

The methodology used to implement the proposed wavelet transform based ECG signal 

denoising is presented in this section. Different steps used to denoise the ECG signal are as 

follows. First, a suitable wavelet transform is selected. A wavelet filter bank with suitable 

architecture based on a decomposition level is implemented. Thresholding technique is used to 

detect the QRS-complex. Input ECG signals from a standard database are considered in .mat 

format. As any ECG signal generally contains noise, ECG signals from the database are 

corrupted by adding random noises. Adding random noise to the signal helps to measure the 

efficiency of the proposed algorithm to reject noise from the signal. Digitized ECG signals are 

then applied to the biorthogonal wavelet transform based wavelet filter banks to denoise and 

decompose into different frequency components. The typical frequency range of an ECG signal 

is from 0.5 - 150 Hz, and that of QRS-complex is from 5 - 24 Hz [166]. After the third level of 

decomposition, the frequency components which are left behind are in the 45 Hz range. The 

output of the third level wavelet filter bank is given as an input to the fourth level wavelet filter 

bank, and its output contains signals in the frequency range which matches with the frequency 

range of QRS-complex, then used for further processing. 

4.1.1 Criterion to Select Wavelet Transform for ECG Signal Analysis 

Accurate analysis of ECG signal with abrupt changes demands a new class of well-localized 

functions in time and frequency. Wavelet transform with a rapidly decaying wave-like 

oscillation for a finite duration having zero mean satisfies this condition. Using Fourier analysis, 

discontinuous, non-smooth waveforms can be converted into a linear combination of extremely 

smooth functions, namely, the sine waves. Whereas the wavelet transform converts smooth 

functions into a linear combination of effectively jagged or discontinuous functions. Thus, going 

from smooth to non-smooth has its place in modern communication and signal processing. The 

wavelet transform is used in numerous engineering applications like telecommunications, signal 

processing, geophysics, image and video coding, and astrophysics. Continuous wavelet 

transform (CWT) and discrete wavelet transform (DWT) are useful to analyze ECG signals. 

DWT is ideally used to denoise and compress signals and images and useful in representing 

many naturally-occurring signals with few coefficients. 
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An ECG signal s(n) is decomposed using forward DWT. The standard relations for the forward 

DWT are as follows. 
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Here, 𝑊∅(𝑏0, 𝑐) and 𝑊𝛹(𝑏, 𝑐) are the scaling function and wavelet function, respectively. 𝜓𝑏,𝑐 

and 𝛷𝑏0,𝑐 are the transformation kernel; b0 is scaling parameter and n is shifting parameter. 
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If n is multiplied by a factor 2𝑏 and with a shift of c units, Eq. (4.5) gets modified into 

 ( ) 2 2(2 ) ( ) 2 bb

p

n pn c h p −− =   (4.6) 
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By interchange the order of summation in Eq. (4.8) 
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Solving Eq. (4.9) results in 
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A similar procedure results in 
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Similarly, the transformed signal is reconstructed using inverse DWT. Inverse DWT can be 

computed using in Eq.(4.12) 
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Fig. 4. 3 Decomposition using wavelets 

Various wavelet families like Haar, Daubechies, Coiflet, biorthogonal, reverse biorthogonal, 

Symlet have been used depending on the suitability in various applications like signal analysis, 

data compression, pattern recognition, medical imaging. Precise estimation of ECG signal 

parameters demands a suitable choice of basis function [167]. These wavelet families are further 

categorized into orthogonal, semi-orthogonal, shift orthogonal, and biorthogonal [168]. 

Orthogonality is used to reconstruct an ECG signal from wavelet coefficients by conserving the 

energy of the ECG signal. As shown in Fig. 4.3, ECG signal is first decomposed using scaling 

coefficients (h(n)) and wavelet coefficients (g(n)) and then down-sampled by the scaling and 

wavelet coefficients. In the next step, h(n) and g(n) are down-sampled to get A1 and B1 also 

known as TREND and DETAIL. The TREND signal A1 is further down sampled. In each step, 

the signal TREND is further down sampled until the ECG signal in the desired frequency band 
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is obtained. The process to reconstruct the ECG signal is in reverse order to that of 

decomposition. 

The orthogonal wavelets are neither regular nor symmetric, hence introduce a non-linear phase 

shift during analysis. The non-linear phase shift results in a temporal shape change in the 

transformed ECG signal, which is not desired. The non-linear phase shift can be eliminated by 

using the biorthogonal wavelet transform as biorthogonal wavelet is regular as well as 

symmetric. Another valuable property of wavelet transform that plays a crucial role while 

analyzing ECG signal is the time-frequency localization and the ability to localize temporal and 

spectral information. Time localization is inversely related to frequency localization and the 

smoothness of the wavelet function. A signal whose events are separated by narrow frequency 

margins need frequency localization. The signals need time localization in which transitory 

events are important. For the selection of a wavelet transform for ECG signal denoising and 

detection, properties of an ECG signal need to be examined. The three essential properties of an 

ECG signal which play a vital role in the selection of wavelet transform are (i) slope of QRS-

complex, (ii) the shape and spectrum of ECG signal [169] and (iii) event localization in time 

[31]. The wavelet transform on an ECG signal should result in a linear phase. Hence such a 

wavelet transform is non-orthogonal. Time localization is vital because of the transient nature 

of ECG events. As biorthogonal wavelets are symmetric, nonorthogonal, and localized in time, 

biorthogonal wavelets satisfy the above-listed criterion. Biorthogonal scaling and wavelet 

function coefficients are calculated using Eq. (4.13) and Eq. (4.14), respectively. 
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With the increase in the order of the wavelet transform based filter, the desired frequency 

response becomes sharper. A higher-order wavelet results in a large number of coefficients, thus 

increasing the computational time and power consumption. Hence there is a tradeoff between 

the order of the filter and frequency response. Quadratic spline wavelet transform is useful in 

avoiding the tradeoff between the order of the filter and frequency response, but the shape of 

the wavelet function is not suitable for ECG signal detection. Biorthogonal wavelet transform 

has a shape that resembles that of an ECG signal when compared to other wavelet transforms. 

It is observed from [31] that almost all wavelet transforms have a similar detection accuracy of 
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90% of the ECG signals available in a database. For the remaining 10% of ECG signals, 

biorthogonal wavelet transform gives less error compared to other wavelet transforms. 

Important properties of selected wavelet transforms are listed in Table 4.1. It is evident from 

Table 4.1 that biorthogonal wavelet transform satisfies all the criterion required for the ECG 

signal denoising and detection. Signal analysis has greatly benefitted by wavelet transform in 

the form of ampleness of the base wavelet developed in the past few years. This has resulted in 

well documented thirteen wavelet families getting a particular reference in the wavelet 

transform literature. This abundance puts an intriguing and obvious question related to the 

selection criteria of the best-fitted wavelet for examining a specific signal. Thus, the most 

challenging aspect in the selection of a proper wavelet. The present research is a result of 

comprehensive study and enriched analysis of different properties of the wavelet transform, 

which has formed the necessary basis for selecting the suitable wavelet transform. The 

properties like symmetricity, shape of the wavelet transform, slope of the QRS-complex, 

number of coefficients, event localization, signal to noise ratio (SNR), root mean square error 

(RMSE) and percentage root-mean-square difference (PRD) are studied. They are thereby 

making biorthogonal 3.1 wavelet transform as the most proper choice for ECG signal detection. 

Table 4. 1: Classification of wavelets base on their properties 

Wavelet 

Transform 

Compact 

Support 
Key Properties Implementation 

Orthogonal  No 
Symmetry and regularity + 

orthogonality 
IIR/FIR 

Semi-orthogonal  
Analysis or 

synthesis 

Symmetry and regularity + optimal 

time-frequency localization 

Recursive 

IIR/FIR 

Shift-orthogonal  No 

Symmetry and regularity + Quasi-

orthogonality +fast decaying 

wavelet 

IIR 

Biorthogonal  Yes 

Symmetry and regularity + linear + 

compact support + optimal time-

frequency localization 

FIR 

*IIR: Infinite impulse response, FIR: Finite impulse response. 
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4.1.2 Criterion for Selecting Wavelet Filter Bank Architecture 

ECG signal contains both high frequency and low-frequency responses. The low-frequency 

responses are more likely to last over an extended region in time hence form the low-frequency 

components of the ECG signal. The high-frequency response in the ECG response lasts for a 

small duration in time and thus forms the high-frequency components of the ECG signal. Hence, 

it is desirable to separate the high frequency and low-frequency components of the ECG signal. 

To separate the frequency components, a system of filters which possess a specific individual 

characteristic as well as collective characteristics is required. Such a system is known as a filter 

bank. A filter bank, as opposed to a single filter in discrete-time signal processing, has a common 

input and summation output. Two filter banks are required for denoising, one for analysis and 

the other for synthesis form central core to multirate discrete signal processing. 

To denoise an ECG signal, different wavelet filter bank architectures like, two-channel filter 

bank [67], quadrature mirror filter bank [170], Mallat's wavelet filter bank [67], parallel filter 

bank, decimator wavelet filter bank [66], undecimator wavelet filter bank [70], and pyramid 

filter bank [171] are proposed by various researchers. One of the primary concerns with all these 

filter bank architectures is that the hardware requirement and the circuit complexity. To reduce 

the overall circuit complexity of a wavelet filter bank, the wavelet filter bank needs to be 

designed in such a way that it can detect all the useful features of an ECG signal, namely P-

wave, Q-wave, R-wave, S-wave, and T-wave.  Wavelet filter bank architectures are verified 

using all the seventy-eight wavelet transforms. Based on the SNR and circuit complexity, a 

modified wavelet filter bank is found suitable for ECG signal denoising. The methodology used 

to implement the proposed technique is discussed in the flowchart as shown in Fig. 4.4 (a). 

Block diagram representation of the wavelet filter bank is shown in Fig. 4.4 (b) and the proposed 

modified biorthogonal 3.1 wavelet transform based wavelet filter bank is shown in Fig. 4.4 (c). 

The proposed wavelet filter bank uses a parallel combination of lowpass and highpass filters in 

wavelet filter bank four, which helps contain both high frequency as well as low-frequency 

components. Also, the use of booth multiplier instead of simple add-shift multiplier makes the 

circuit fast and power-efficient [76]. 

The lowpass and highpass filter used in the wavelet filter bank of the modified biorthogonal 3.1 

wavelet is designed using transfer function given in Eq. (4.15) and Eq.(4.16), respectively. 



   

61 
 

 ( ) 1 21.06 1.53 1.06H z z z− −= + +   (4.15) 

 ( ) 11G z z−= −   (4.16) 

 

(a) 

 

(b) 
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(c) 

Fig. 4. 4 (a) Flowchart of the proposed technique. (b) Basic block diagram of wavelet filter bank. (c) Proposed 

modified biorthogonal 3.1 wavelet transform based wavelet filter bank used to denoise the ECG signal 

 

(a) 

 

(b) 

Fig. 4. 5 Linear phase structure realizations, (a) lowpass filter, (b) highpass filter 

4.1.3 Simulation Results and Performance Evaluation of the Proposed Modified 3.1 

Wavelet Transform Based Wavelet Filter Bank 

Performance of the proposed modified biorthogonal 3.1 wavelet transform based filter bank 

used to denoise the ECG signal is evaluated using the signal to noise ratio (SNR), root mean 

square error (RMSE), and percent root mean square difference (PRD). 
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The proposed design is implemented using Matlab® and tested by using various ECG signals 

from different databases, namely, MIT-BIH database, BIDMC congestive heart failure database, 

PTB diagnostic ECG database, and St.-Petersburg Institute of Cardiological Techniques 12-lead 

arrhythmia database [188]. The frequency range of raw ECG data taken from these databases 

lies between 250 - 1000 Hz. In addition to the forty-eight records and 109494 beats of MIT-BIH 

arrhythmia database, the 105 records from the QT database, twelve records from the NSTB, 549 

records from the PTB database are also used to evaluate the proposed technique and compared 

with the existing techniques. 

ECG signals of three different duration (ten seconds, one minute, and full-length ECG signal) 

are used to calculate the SNR. For the worst-case consideration, white Gaussian noise and 

random noise are generated and added to the original ECG signal. Then, the noisy ECG signal 

is denoised using a conventional wavelet transform based filter bank. White Gaussian noise is 

first added to 100.mat and 215.mat ECG signals from the MIT-BIH database. Then using all 

seventy-eight wavelet transforms the above-mentioned ECG signals are denoised using 

conventional wavelet filter bank, and their SNR performance is studied. Table 4.2 lists the SNR 

performance of all seventy-eight wavelet transforms. 

Random noise is added to 100.mat ECG signal from MIT-BIH database. Then using all seventy-

eight wavelet transforms, the ECG signal is denoised, and the SNR performance is studied. 

Table 4.3 lists the SNR performance of all seventy-eight wavelet transforms.  

As observed from Table 4.2 and Table 4.3, different wavelet transforms resulted in an SNR 

ranging between 26.68 to 41.12 dB by using the conventional wavelet filter bank on 100.mat 

and 215.mat ECG signals from MIT-BIH arrhythmia database. Out of the wavelet transform, 

biorthogonal 3.1 wavelet transform has the highest SNR; hence, used in the proposed work. 

Some modifications have made in the biorthogonal 3.1 wavelet transform based on the 

requirements of the ECG signal, as explained below. To denoise, an ECG signal, not all the 

coefficients of a biorthogonal 3.1 wavelet transform are required. Wavelet coefficients which 

do not exist in the frequency range of an ECG signal are made zero. After selecting the wavelet 

transform and its architecture, selection of decomposition level is also essential. 
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Table 4. 2: Signal to noise ratio analysis of different wavelet transforms using 100.mat MIT-BIH signal added 

with white Gaussian noise 

Wavelet 

SNR (dB) of 

100.mat 

Signal 

SNR (dB) 

of 215.mat 

Signal 

Wavelet 

SNR (dB) 

of 100.mat 

Signal 

SNR (dB) of 

215.mat 

Signal 

Haar 34.00 36.91 Coif3 29.49 34.59 

Db1 33.41 36.95 Coif4 29.82 34.73 

Db2 34.21 35.99 Coif5 31.0 34.89 

Db3 31.98 35.83 Bior1.1 33.40 37.00 

Db4 32.38 35.64 Bior1.3 34.49 36.08 

Db5 33.42 35.26 Bior1.5 33.01 35.83 

Db6 32.55 35.31 Bior2.2 34.33 37.00 

Db7 31.30 35.28 Bior2.4 33.18 36.15 

Db8 32.21 34.99 Bior2.6 32.57 35.80 

Db9 33.02 34.92 Bior2.8 31.55 35.45 

Db10 31.55 34.99 Bior3.1 37.92 41.12 

Db11 31.09 34.79 Bior3.3 34.66 38.57 

Db12 32.42 34.68 Bior3.5 33.88 36.58 

Db13 32.19 34.70 Bior3.7 33.00 35.96 

Db14 31.53 34.70 Bior3.9 32.80 36.28 

Db15 32.03 34.52 Bior4.4 31.19 34.29 

Db16 32.89 34.60 Bior5.5 32.70 36.24 

Db17 31.00 34.54 Bior6.8 32.88 35.36 

Db18 30.28 34.59 RBior1.1 31.09 38.97 

Db19 33.37 34.39 RBior1.3 33.02 36.24 

Db20 31.85 34.42 RBior1.5 33.44 35.99 

Sym2 35.13 35.85 RBior2.2 34.57 36.18 

Sym3 34.05 35.95 RBior2.4 33.02 35.91 

Sym4 32.88 35.74 RBior2.6 32.42 35.75 

Sym5 31.32 35.22 RBior2.8 32.39 35.95 

Sym6 35.02 35.40 RBior3.1 36.11 40.56 



   

65 
 

As discussed earlier, usually, the typical frequency range of an ECG signal is from 0.5 - 150 Hz, 

and that of QRS-complex is from 5 - 24 Hz. Frequency components at every wavelet filter bank 

output are shown in Fig. 4.6. Hence, after the fourth level of decomposition, the frequency will 

be in the 0 - 22.5 Hz range. Therefore, only outputs of the fourth level wavelet filter bank are 

Table 4. 3: Signal to noise ratio analysis of different wavelet transforms using 100.mat MIT-BIH signal added 

with random noise 

Wavelet SNR (dB) of 100.mat Signal Wavelet SNR (dB) of 100.mat Signal 

Haar 36.23 Sym14 32.31 

Db1 36.23 Sym15 29.87 

Db2 29.88 Sym16 28.93 

Db3 27.24 Sym17 34.88 

Db4 28.59 Sym18 36.59 

Db5 29.17 Sym19 28.86 

Db6 28.53 Sym20 32.37 

Wavelet 

SNR (dB) of 

100.mat 

Signal 

SNR (dB) 

of 215.mat 

Signal 

Wavelet 

SNR (dB) 

of 100.mat 

Signal 

SNR (dB) of 

215.mat 

Signal 

Sym7 33.98 34.99 RBior3.3 35.01 38.35 

Sym8 32.98 35.03 RBior3.5 34.42 36.69 

Sym9 33.15 34.80 RBior3.7 32.30 33.55 

Sym10 34.84 35.59 RBior3.9 33.10 35.61 

Sym11 31.58 34.82 RBior4.4 32.48 36.00 

Sym12 32.08 34.89 RBior5.5 29.07 33.27 

Sym13 33.13 35.61 RBior6.8 32.65 35.28 

Sym14 33.00 34.60 Sym18 32.36 34.55 

Sym15 32.41 34.71 Sym19 30.33 34.48 

Sym16 31.59 35.21 Sym20 33.11 34.35 

Sym17 32.25 34.45 Coif1 32.89 36.06 

Coif2 33.18 34.97 
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Wavelet SNR (dB) of 100.mat Signal Wavelet SNR (dB) of 100.mat Signal 

Db7 28.11 Coif1 31.89 

Db8 26.68 Coif2 27.18 

Db9 27.92 Coif3 28.17 

Db10 27.94 Coif4 27.76 

Db11 27.94 Coif5 28.05 

Db12 27.97 Bior1.1 31.19 

Db13 27.57 Bior1.3 35.66 

Db14 28.11 Bior1.5 36.13 

Db15 28.16 Bior2.2 31.77 

Db16 35.14 Bior2.4 32.52 

Db17 28.60 Bior2.6 32.60 

Db18 30.55 Bior2.8 34.87 

Db19 28.28 Bior3.1 39.05 

Db20 28.31 Bior3.3 35.53 

Sym2 33.12 Bior3.5 34.88 

Sym3 26.99 Bior3.7 35.87 

Sym4 36.27 Bior3.9 35.51 

Sym5 35.36 Bior4.4 32.69 

Sym6 32.62 Bior5.5 32.75 

Sym7 28.47 Bior6.8 32.84 

Sym8 36.22 RBior1.1 35.11 

Sym9 35.43 RBior1.3 36.26 

Sym10 36.20 RBior1.5 35.42 

Sym11 29.44 RBior2.2 31.48 

Sym12 32.35 RBior2.4 31.86 

Sym13 30.37 RBior2.6 32.10 

RBior2.8 34.20 RBior3.9 36.58 

RBior3.1 37.07 RBior4.4 31.98 

RBior3.3 36.00 RBior5.5 34.77 
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used for further processing as their frequency component matches the frequency of the QRS-

complex. 

 

Fig. 4. 6 Frequency component at each wavelet filter bank output 

 

Table 4.4 summarizes the SNR of different ECG signals after different levels of decomposition. 

The effect of biorthogonal 3.1 wavelet decomposition level on ECG signal is further studied by 

using ECG signals of ten second duration. Random noise is added to all of the ECG signals. 

As observed from Table 4.4, SNR increases until the fourth level of wavelet decomposition and 

decreases from the fifth level of the wavelet decomposition. By using the modified 3.1 wavelet 

transform based filter bank, at the fourth level of wavelet decomposition, SNR ranging from 

36.01 - 53.92 dB is obtained for different ECG signals. 

From Table 4.4, it is clear that the fourth level of wavelet decomposition has the highest SNR 

compare to other levels. As the fourth level of decomposition results in the required frequency 

range and also provides maximum SNR, the fourth level wavelet filter bank is used to denoise 

ECG signal denoising in the present work. 
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Table 4. 4: SNR of ten seconds ECG signal based on modified biorthogonal 3.1 wavelet transform 

ECG 

Signal 

SNR (dB) at 

Level 2 

SNR (dB) at 

Level 3 

SNR (dB) at 

Level 4 

SNR (dB) 

at Level 5 

SNR (dB) at 

Level 6 

100.mat 50.39 50.46 50.59 49.35 49.10 

101.mat 49.09 49.31 50.16 48.92 48.76 

102.mat 50.21 50.39 50.72 50.18 49.87 

103.mat 45.81 45.94 46.11 45.18 45.00 

104.mat 44.52 44.81 45.00 44.38 44.18 

105.mat 45.97 46.10 46.18 45.66 45.39 

106.mat 40.79 40.43 41.11 40.69 40.53 

107.mat 37.15 37.44 38.00 36.83 36.51 

108.mat 50.55 50.70 50.78 49.93 49.61 

109.mat 43.85 43.99 44.12 43.59 43.28 

111.mat 50.16 50.31 50.81 50.42 50.05 

112.mat 47.88 48.00 48.06 46.62 46.19 

113.mat 43.08 43.22 43.46 42.63 42.39 

114.mat 53.71 53.82 53.92 52.95 52.49 

115.mat 45.66 45.79 45.85 45.29 45.03 

116.mat 38.95 39.23 39.57 38.64 38.51 

117.mat 46.96 47.08 47.14 46.51 46.09 

118.mat 36.75 36.89 37.22 36.84 36.01 

119.mat 40.88 41.17 41.41 40.43 40.21 

121.mat 47.26 47.49 47.54 46.99 46.59 

122.mat 43.59 43.83 43.96 43.00 42.66 

123.mat 45.07 45.20 45.38 45.00 44.79 

124.mat 43.14 43.39 43.53 42.96 42.39 

200.mat 42.98 43.13 43.29 42.65 42.43 

201.mar 40.62 40.85 41.17 40.71 40.34 

202.mat 48.50 48.62 48.76 48.05 47.79 

205.mat 49.57 49.70 49.77 49.17 49.01 
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ECG 

Signal 

SNR (dB) at 

Level 2 

SNR (dB) at 

Level 3 

SNR (dB) at 

Level 4 

SNR (dB) 

at Level 5 

SNR (dB) at 

Level 6 

207.mat 45.93 46.15 46.23 45.53 45.40 

208.mat 41.46 41.88 42.04 41.00 39.89 

209.mat 47.88 48.04 48.19 47.53 47.25 

210.mat 51.49 51.77 52.08 51.67 51.29 

212.mat 45.20 45.43 45.51 44.80 44.44 

213.mat 40.22 40.71 40.96 40.00 39.77 

214.mat 42.38 42.54 42.88 42.06 41.87 

215.mat 48.05 48.16 48.30 47.87 47.51 

217.mat 40.50 40.64 41.06 40.15 40.01 

219.mat 41.76 41.93 42.12 41.49 41.26 

220.mat 45.00 45.21 45.28 44.75 44.61 

221.mat 46.15 46.35 46.44 45.98 45.81 

222.mat 51.46 51.57 51.68 51.02 50.92 

223.mat 43.10 43.35 43.49 42.83 42.73 

228.mat 50.17 50.28 50.44 50.00 49.89 

230.mat 51.44 51.86 52.00 51.73 51.21 

231.mat 46.57 46.69 46.74 46.29 46.03 

232.mat 53.11 53.21 53.62 53.00 52.85 

233.mat  40.33  40.53 40.81  40.11 40.00 

234.mat  46.27  46.29  46.46 46.02  45.82 

(* Here, Level-2 through Level-6 indicate different wavelet decomposition levels) 

Using the fourth level filter bank, ECG signals of different duration are denoised. All the ECG 

signals are taken from the MIT-BIH arrhythmia database. Random noise is added to all the 

signals. Table 4.5 shows the SNR of one-minute ECG data of the MIT-BIH arrhythmia database, 

whereas, Table 4.6 shows the SNR of one hour ECG data. 

As observed in Table 4.5 and Table 4.6, the proposed modified biorthogonal 3.1 wavelet 

transform based filter bank is used to analyze different ECG signals from MIT-BIH arrhythmia 

resulted in an SNR ranging between 36.89 and 53.81 dB. 
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Table 4. 5: SNR of one-minute ECG signal of MIT-BIH arrhythmia database after denoising using the fourth 

level of decomposition 

ECG Signal SNR (dB) ECG Signal SNR (dB) ECG Signal SNR (dB) 

100.mat 51.53 116.mat 44.84 219.mat 37.58 

101.mat 49.34 117.mat 47.20 220.mat 44.95 

102.mat 49.97 119.mat 37.64 221.mat 46.40 

103.mat 45.54 121.mat  48.19 222.mat 52.09 

104.mat 50.63 122.mat 42.22 223.mat 38.17 

105.mat 45.87 123.mat 45.58 228.mat 45.21 

106.mat 45.69 124.mat 43.61 230.mat 49.76 

107.mat 36.89 205.mat 49.80 231.mat 46.55 

108.mat 50.17 209.mat 48.02 233.mat 52.00 

109.mat 43.42 210.mat 47.84 234.mat 45.91 

111.mat 48.77 212.mat 45.55 114.mat 53.81 

112.mat 48.31 213.mat 40.92 115.mat 45.52 

113.mat 37.54 214.mat 51.66 215.mat 47.02 

114.mat 48.79 115.mat 39.48 

The modified wavelet filter bank achieves a high SNR for both one-minute and one-hour ECG 

signals. 

Table 4.7 summarizes the performance of ECG signal denoising technique based on 

biorthogonal wavelet transform 3.1. In this analysis, ECG signals from different ECG databases 

with a randomly generated noise and white Gaussian noise are considered. 

From Table 4.7, the proposed modified biorthogonal 3.1 wavelet transform based ECG 

denoising technique is evaluated using different ECG databases which results in the average 

SNR ranging between 45.12 and 46.88 dB against the input SNR of -10 dB, the average RMSE 

is ranging between 0.002 and 0.008, and the average PRD ranging between 11.853 and 12.210. 

The output of the proposed wavelet filter bank for two different ECG signals, one each from the 

MIT-BIH arrhythmia database and QT database are shown in Fig. 4.7 and Fig. 4.8 respectively. 
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Table 4. 6: SNR of one-hour ECG signal of MIT-BIH arrhythmia database after denoising using the fourth level 

of decomposition 

ECG Signal SNR (dB) ECG Signal SNR (dB) ECG Signal SNR (dB) 

100.mat 49.39 116.mat 37.44 219.mat 41.81 

101.mat 48.93 117.mat 46.73 220.mat 44.95 

102.mat 49.61 119.mat 48.52 221.mat 51.66 

103.mat 47.52 121.mat 38.57 222.mat 52.00 

104.mat 47.54 122.mat 47.53 223.mat 43.31 

105.mat 48.91 123.mat 45.31 228.mat 45.01 

106.mat 44.54 124.mat 38.11 230.mat 45.11 

107.mat 38.05 205.mat 49.24 231.mat 45.55 

108.mat 46.07 209.mat 47.93 233.mat 50.76 

109.mat 49.61 210.mat 39.11 234.mat 49.87 

111.mat 47.43 212.mat 45.55 114.mat 52.81 

112.mat 49.55 213.mat 40.88 115.mat 40.18 

113.mat 43.68 214.mat 50.48 215.mat 46.92 

Table 4. 7: Performance of ECG denoising technique based on modified biorthogonal 3.1 wavelet transform 

ECG 

database 

Duration Average SNR (dB) Average RMSE Average PRD (%) 

MIT-BIH 10-seconds 46.88 0.008 12.141 

MIT-BIH 1-minute 45.94 0.003 11.943 

MIT-BIH One-hour 46.06 0.002 12.008 

Fantasia One-hour 46.27 0.008 11.853 

Apnea ECG One-hour 45.12 0.006 12.210 

ADB One-hour 45.92 0.003 11.943 

QT-database One-hour 45.52 0.002 11.871 

Fig. 4.7 (a) contains input ECG signal of ten second duration, base at 1024 mV, and sampling 

frequency of 360 Hz for MIT-BIH. Random noise is shown in Fig. 4.7 (b) is generated and 

added to the original ECG signal and Fig. 4.7 (c) represents the noisy ECG signal. Finally, the 

denoised ECG signal is shown in Fig. 4.7 (d).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4. 7 (a) Input ECG signal is taken from the MIT-BIH arrhythmia database, (b) random noise source, (d) 

input ECG signal after noise addition, (d) denoised ECG signal 
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Fig. 4.8 (a) contains input ECG signal of ten-second duration, base at 1024 mV and sampling 

frequency of 250 Hz for QT database. The random noise is shown in fig. 4.8 (b) is added to the 

original ECG signal. Fig. 4.8 (c) represents the noisy ECG signal. Finally, the denoised ECG 

signal is shown in Fig. 4.8 (d). 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 4. 8 (a) Input ECG signal is taken from QT database, (b) random noise source, (d) input ECG signal after 

noise addition, (d) denoised ECG signal 

 

(a) 

 
(b) 

 

(c) 
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(d) 

Fig. 4. 9 (a) Input ECG signal is taken from fantasia database, (b) random noise source, (d) input ECG signal 

after noise addition, (d) denoised ECG signal 

Fig. 4.9 (a) contains input ECG signal of long duration, a gain of 2000, and a sampling frequency 

of 250 Hz from fantasia database. The random noise shown in fig. 4.9 (b) is added to the original 

ECG signal. Fig. 4.9 (c) represents the noisy ECG signal. Finally, the denoised ECG signal is 

shown in Fig. 4.9 (d). 

Table 4. 8: Hardware comparison of proposed modified 3.1 wavelet transform based filter bank with existing 

ones 

Method 
Lowpass 

Filters 

Highpass 

Filters 
Adders Multipliers 

Delay 

Elements 

Pipelined [32] 3 1 16 16 24 

Undecimator [67] 3 4 16 13 13 

Decimator [75] 3 4 16 13 13 

Conventional [76] 3 4 16 13 13 

Proposed modified WFB 4 1 5 9 9 

Table 4. 9: Area comparison of adders and multipliers of proposed wavelet filter bank with existing ones 

Method Adders 
Area Required 

for Adders  
Multipliers 

Area Required for 

Multiplier  

Pipelined [32] 16 1260.16 µm2 16 76313.76 µm2 

Undecimator [67] 16 1260.16 µm2 13 62004.93 µm2 

Decimator [75] 16 1260.16 µm2 13 62004.93 µm2 

Conventional [76] 16 1260.16 µm2 13 62004.93 µm2 

Proposed modified WFB 5 393.8 µm2 9 42926.49 µm2 
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Hardware comparison of the proposed modified biorthogonal 3.1 wavelet transform based filter 

bank with the existing denoising technique is listed in Table 4.8. It is observed from Table 4.8 

that the proposed architecture for the wavelet filter bank required five adders, nine delay 

elements, and nine multipliers. In 180 nm technology, the total area required to realize these 

adders and multipliers is 393.8 µm2 and 42926.49 µm2, respectively, which is comparatively 

lower than the previously reported methods [67,75,76,32]. From Table 4.9, it is clear that the 

proposed wavelet filter bank architecture uses less hardware compared to the existing wavelet 

filter banks. The area required to realize the adders (78.76 µm2 per adder [189]) of the proposed 

wavelet filter bank is 393.8 µm2 and the area required to realize the multipliers (4769.61 µm2 

per Multiplier [190]) of the proposed wavelet filter bank is 42926.49 µm2. 

4.2 DEMAND BASED WAVELET FILTER BANK  

Circuit complexity is the primary concern with the modified biorthogonal 3.1 wavelet transform 

based wavelet filter bank architecture. As discussed earlier, the use of a multiplier to multiply 

lowpass and highpass filter outputs of wavelet filter bank-four in the modified 3.1 wavelet 

transform based wavelet filter bank increases the hardware cost of the ECG signal denoising 

technique. Hence, to reduce the overall circuit complexity of the wavelet filter bank, a new 

demand-based wavelet filter bank architecture is proposed for ECG signal denoising that utilizes 

a cascade connection of three lowpass filters which requires less hardware and consume low 

power. Block diagram representation of the proposed wavelet filter bank is shown in Fig. 4.10. 

 

Fig. 4. 10 Proposed biorthogonal 3.1 wavelet transform based demand-based wavelet filter bank architecture 

In the proposed biorthogonal 3.1 wavelet transform based demand-based wavelet filter bank 

architecture; ECG signal is first filtered using a lowpass filter to yield lowpass sub-bands. As 

per Nyquist criterion, after filtering, half the samples are thrust aside. While realizing the filters, 

due to the smaller number of coefficients, the resultant implementation has a reduced 

computational complexity. These filters can also be used to reconstruct the sub-bands while 

canceling any aliasing which occurs due to down sampling. In the next level of decomposition, 

the sub-bands are iteratively filtered by the demand-based wavelet filter bank to yield narrow 
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sub-bands. Demand-based wavelet filter bank architecture is verified for all wavelet transforms. 

The efficiency of a filter bank is determined by finding SNR, PRD, RMSE, and circuit 

complexity. The transfer function of lowpass filter H(z) and highpass filter G(z) used in the 

proposed biorthogonal wavelet filter bank architecture is given by Eq. (4.17) and Eq. (4.18). 

 
1 2 3( ) 0.12 0.99 0.99 0.15H z z z z− − −= − + + −   (4.17) 

 
1 2 3( ) 0.17 0.53 0.53 0.17G z z z z− − −= − + − +   (4.18) 

Here, z-1, z-2 and z-3 are delay elements. 

 

Fig. 4. 11 Wave digital filter realization of a third-order lowpass filter 

However, the cascading of filters increases hardware complexity and power consumption in the 

circuit [173]. To further reduce the circuit complexity of proposed filter bank architecture, 

lowpass filters are realized using wave digital filter (WDF). WDF realization is advantageous 

as it requires less number of the multipliers and delay elements when compared to other filter 

realization techniques reported prior [57]. As a result, the WDF realization reduces the overall 

circuit complexity of the filter bank. Wave digital filter realization of a third-order lowpass filter 

is shown in Fig. 4.11. 

Various hardware components required to realize the wavelet filter bank architecture are listed 

in Table 4.10. It is observed from Table 4.10 that the proposed architecture for the wavelet filter 

bank requires ten adders, four multipliers, and three delay elements. 
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Table 4. 10: Hardware comparison of proposed demand-based wavelet filter bank with existing ones 

References 
Lowpass 

Filters 

Highpass 

Filters 
Adders Multipliers 

Delay 

Elements 

Rodrigues et al.  [66] 3 4 32 26 NR* 

Min et al. [70] 3 4 16 13 13 

Bhavtosh et al. [76] 3 4 16 13 13 

Proposed demand-based 

WFB [210] 

3 0 10 4 3 

*NR = Not reported, WFB = Wavelet filter bank. 

It is evident from Table 4.10 that the proposed demand based wavelet filter bank realization 

uses less hardware compared to the other existing filter bank realizations. The results of this 

work are published in [210]. 

4.2.1 Criterion to Select Wavelet Decomposition Level 

The decomposition level of the wavelet transform plays a vital role in the detection of the 

number of waves and their location in an ECG signal. Selecting the desired decomposition level 

is associated with the frequency components necessary for the ECG signal analysis for a given 

number of samples. 

Biorthogonal wavelet transform satisfies the relationship as in Eq. (4.19). 

 2N p=   (4.19) 

Here, ‘p’ is the number of signal samples, and ‘N’ is the decomposition level. An ECG signal 

after different levels of decomposition is shown in Fig. 4.8. Usually, the typical frequency range 

of an ECG signal is from 0.5 - 150 Hz, and that of QRS-complex is from 5 - 24 Hz [174]. Since 

most of the QRS-complex frequencies lie between 0 - 24 Hz, the third level of decomposition 

gives an optimal performance, hence, selected for the proposed work. 

4.2.2. Wavelet Thresholding Techniques 

Wavelet thresholding is used to retain the wavelet coefficients of a signal whose amplitude is 

higher than a particular preset value, called as a threshold. If the amplitude of the wave is smaller 
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than the threshold, then the corresponding wavelet coefficients are made zero. Ideally, the 

threshold value is chosen such that the noise coefficients are discarded, and the signal is 

estimated from the remaining wavelet coefficients [175]. If the threshold value is too small, then 

the wavelet coefficients also contain the noise. Thus, the estimated signal is not noise-free. On 

the other hand, if the value of the threshold is large, then the signal is over smoothened, which 

may lead to the loss of valid information. Thus, the selection of an optimal threshold value 

becomes vital to reduce the mean square error (MSE) [176].  There are five different types of 

thresholding techniques, namely, hard thresholding [177], soft thresholding [177], sure shrink 

[177], hybrid thresholding [177], and wavelet Wiener filter. The hard thresholding method 

smoothens the signal, but may result in spurious blips in the output. Soft threshold method 

overcomes this drawback. Sure shrink, and hybrid shrink methods smoothen the signal but do 

not reduce RMSE.  

In the case of ECG signal interference with power-line noise, it is observed that applying hard, 

soft, sure shrink thresholding methods results in large variance and RMSE increases. In case of 

an ECG signal interference with EMG signal noise, it is observed that applying hard, soft, sure 

shrink thresholding methods, the variance and bias square value either simultaneously increases 

or decreases, and MSE increases. In wavelet-Wiener filter thresholding method, both variance 

and bias square value decreases, and thus the RMSE is small, hence, used in the proposed work. 

4.2.3 Simulation Results and Performance Evaluation of the Proposed Demand-Based 

Wavelet Filter Bank 

The simulation procedure of the proposed demand-based wavelet filter bank architecture is as 

follows. Initially, the collected ECG data are further classified into five types: normal, atrial 

premature contraction (APC), premature ventricular contraction (PVC), left bundle branch 

block and right bundle branch block. Table 4.11 categorizes different ECG signals available in 

the MIT-BIH database. 

SNR, RMSE, PRD are the three performance evaluation indexes of the proposed ECG signal 

denoising technique. The proposed demand-based wavelet filter bank-based ECG denoising 

technique is compared with the existing literature [191-196] to validate the denoising 

capabilities. To ensure a fair comparison between various ECG denoising methods given in 

[191-196], all these methods are implemented under the same conditions using MATLAB®.  
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Table 4. 11: Detail of different types of ECG signals 

Type of ECG Signal ECG Record Total Number of Beats 

Healthy 100, 101, 108, 112. 2000 

Atrial Premature Contraction 

103, 121, 124, 200, 201, 202, 

205, 207, 209, 213, 215, 219, 

220, 222, 223, 228, 231, 232, 

233 

2000 

Premature Ventricular 

Contraction  
106, 107, 200, 201 2000 

Right Bundle Branch Block 118, 207, 212 2000 

Left Bundle Branch Block 109, 111, 207, 214 2000 

Performance of the proposed demand-based wavelet filter bank is evaluated in five different 

conditions, namely, normal ECG signal, ECG signal with random noise, ECG signal with white 

Gaussian noise (WGN), ECG signal with baseline wandering noise (BWN) and ECG signal with 

power line interference noise (PLI). All the above four noises are generated and added to the 

raw ECG signal. Table 4.12 presents the performance comparison of the proposed demand 

wavelet filter bank-based ECG denoising technique with the existing techniques. 

Table 4. 12: Performance comparison of the proposed demand-based wavelet filter bank with the existing 

techniques 

References 
Random Noise WGN BWN PLI 

SNR MSE SNR MSE SNR MSE SNR MSE 

Komaty et al. [191] NA NA 1.21 NA NA 0.02 NA NA 

Chang et al. [192] NA NA 6.85 NA NA 0.002 NA NA 

Weng et al. [193] 10.01 0.002 8.12 0.0002 14.02 0.003 10.01 0.002 

Nguyen et al. [194] 9.12 0.001 NA 0.0020 11.50 NA 9.12 0.001 

Tan et al. [195] NA NA NA 0.0039 8.51 NA NA NA 

Wang et. al. [196] 9.00 0.002 6.18 0.0016 12.98 0.002 9.00 0.002 

Proposed demand 

WFB 
30.00 0.0008 32.6 0.0003 28.38 0.002 30.00 0.0008 
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Table 4.13 presents the PRD comparison of the proposed demand wavelet filter bank-based 

ECG signal denoising technique with the existing techniques. It is evident from Table 4.12 and 

Table 4.13 that the proposed demand wavelet filter bank-based ECG denoising technique 

achieves highest SNR, lowest MSE, and lowest PRD as compared to the previously designed 

ECG denoising techniques. 

Table 4. 13: PRD comparison of the proposed demand wavelet filter bank-based technique with the existing 

techniques 

References PRD 

Komaty et al. [191] 1.28 

Chang et al. [192] 2.69 

Weng et al. [193] 3.93 

Nguyen et al. [194] 2.47 

Tan et al. [195] 6.31 

Wang et al. [196] 2.86 

Proposed demand WFB 0.47 

Area comparison of adders and multipliers of the proposed demand-based filter bank with the 

existing denoising technique is listed in Table 4.14. It is observed from Table 4.14 that the 

proposed architecture for the wavelet filter bank required ten adders, and four multipliers.  

Table 4. 14: Area comparison of adders and multipliers of proposed demand-based wavelet filter bank with 

existing ones 

Method Adders 
Area Required 

for Adders  
Multipliers 

Area Required for 

Multiplier 

Pipelined [32] 16 1260.16 µm2 16 76313.76 µm2 

Undecimator [67] 16 1260.16 µm2 13 62004.93 µm2 

Decimator [75] 16 1260.16 µm2 13 62004.93 µm2 

Conventional [76] 16 1260.16 µm2 13 62004.93 µm2 

Demand based WFB  10 787.6 µm2 4 19078.44 µm2 
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In 180nm technology, the total area required to realize these adders and multipliers is 787.6 µm2 

and 19078.44 µm2, respectively, which is comparatively lower than the existing reported 

methods [67,75,76,32]. From Table 4.14, it is clear that the proposed wavelet filter bank 

architecture uses less hardware compared to the existing wavelet filter banks. 

The output of the proposed demand-based wavelet filter bank is shown in Fig, 4.12. Fig. 4.12 

(a) contains an input ECG signal with a sampling frequency of 360 Hz taken from the MIT-BIH 

arrhythmia database. Random noise is shown in Fig. 4.12 (b) is generated and added to the 

original ECG signal and Fig. 4.12 (c) represents the noisy ECG signal. Finally, Fig. 4.12 (d) 

represents the denoised ECG signal.  

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 4. 12 Output of the proposed heartrate monitoring and Therapeutic Devices, (a) input ECG signal, (b) noise 

source, (c) noise added ECG signal, (d) Denoised ECG signal 

4.3 SUMMARY 

The wavelet transform-based filter bank architecture suitable for ECG signal denoising is 

proposed in this chapter. The proposed demand-based wavelet filter bank uses only three 

lowpass filters for the filtering purpose. A digitized ECG signal is applied to the demand-based 

wavelet filter bank which separates the QRS-complexes from the noises. One of the main 

advantages of the demand-based wavelet filter bank architecture is that multiplexer and 

multiplier circuit are not required for further processing. The proposed architecture consumes 

less area and is relatively fast compared to existing wavelet filter bank architectures. 
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CHAPTER 5 

ECG SIGNAL DETECTION AND LOSSLESS DATA 

COMPRESSION TECHNIQUES FOR IMPLANTABLE 

CARDIAC PACEMAKER SYSTEMS 

Clinical procedures have a prominent and essential space to biomedical signal transmission 

techniques. Signal transmission techniques enable a remote clinical assessment using 

biomedical signals. Healthcare processes generate substantial data, thus demand a massive data 

transmission. Thus, the application of data compression techniques on biosignal transmission 

can make a remote clinical assessment cost-effective. For example, several hours of cardiac 

activity is recorded using multiple channel ECG recorder generates an enormous amount of data. 

Thus, it is imperative that an ECG recording system is equipped with sufficient storage capacity 

clubbed with channel bandwidth. As real-time monitoring requires large memory and ample 

bandwidth to transfer raw data, a proper compression technique is required for transmission and 

data storage. Further, to enable secure off-line data storage through ECG archives, the ECG data 

needs to be compressed for a cost-effective solution. Thus, there is an obvious requirement for 

data compression in biomedical signals. This chapter presents the theoretical aspects, simulation 

results and performance analysis of the proposed ECG signal detection and lossless data 

compression methods. The chapter is divided into two sections, namely, ECG signal detection, 

and lossless data compression. Performance of the proposed methods is verified using different 

ECG databases.  

5.1 ECG SIGNAL DETECTION 

P-wave, QRS-complex, T-wave are the main features in an ECG signal which provide 

information about the cardiac health of a person. Automatic detection of P-wave, QRS-complex 

and T-wave is the essential aspect of ECG signal processing and analysis. The performance of 

any ECG detection algorithm mainly relies on the accuracy of QRS-complex detector. A 

comprehensive review of the existing ECG signal detection techniques is found in literature [63, 

64, 65]. Many ECG signal detection algorithms present in the literature detect QRS-complex. 

Most of the QRS-complex detection techniques include one of the following methods: 
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thresholding based, neural network, hidden Markov model (HMM), matched filter, zero-

crossing, multiplication of backward difference, syntactic method and singularity-based 

approach [63, 64, 65]. Finding a robust algorithm to detect a QRS-complex is difficult. Thus, 

most of the ECG detection methods are not universally accepted. Hence, continuous efforts are 

made by various researchers to improve the detection capabilities and other vital features of an 

ECG signal.  

The use of thresholding approach for ECG signal detection is recommended, as thresholding 

techniques are simple, numerically efficient to detect different waves present in an ECG signal 

and provide high detection accuracy. The methodology used to implement the proposed ECG 

signal detection techniques is as follows. The threshold value is determined after passing the 

ECG signal through a wavelet filter bank. The amplitude of incoming denoised ECG waves 

from the wavelet filter bank is compared with a threshold value. Two types of threshold values, 

namely hard threshold and soft threshold can be used to compare the amplitude of the ECG 

signal. The waves with amplitude value less than the threshold value are counted as zero in both 

hard and soft thresholds. Thus, the functionality of both hard and soft threshold values is the 

same in the case of those waves with amplitude less than the set threshold.  For the ECG waves 

with an amplitude value larger than a set threshold, hard threshold and the soft threshold result 

in different functionality. In case of the hard threshold, those waves having an amplitude value 

larger than the set threshold are forced to approach towards “one” thus detecting the presence 

of a wave. In doing so, some features of the signal are lost and hence using a hard threshold 

degrades the detection accuracy. In the soft threshold, the value of the wave is retained if the 

value of the amplitude is larger than the threshold value. Thus, a soft threshold is more 

advantageous than the hard threshold. Hence in the proposed QRS-complex detector, soft 

thresholding technique is used. Eq. (5.1) defines the threshold value used in this work. This 

work is published in [216]. 

 ( )0.8 maxthV A=    (5.1) 

Here, A(max) is the maximum amplitude of the denoised ECG signal.  

A wave having an amplitude higher than the defined threshold value is considered to be QRS-

complex. Thus, by identifying the QRS-complex, the time interval between two consecutive R-

waves is calculated. 
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The reason for selecting the above-said threshold values is as follows. Different values of the 

threshold are used to detect the QRS-complex. The threshold value neither should result in a 

false QRS-complex detection nor should miss a QRS-complex. Further, setting a large value of 

threshold increases the probability to miss a wave, thus increasing the error rate of detection. 

Setting a small value of threshold results in increased computation complexity and false 

detection, thus reducing the detection efficiency of the system. Different values of Vth, ranging 

from 0.7 - 0.9, are considered. Vth close to 0.7 resulted in an increased false QRS-complex 

detection, while, Vth close to 0.9 resulted in the missed QRS-complex. Hence the threshold value 

is fixed at 0.8 ×A(max). As the Vth value is fixed, this method is called as fixed threshold method. 

Further, analysis of a large dataset may result in an optimized value of Vth. 

5.1.1 Simulation Results and Performance Evaluation of the Proposed Soft-Thresholding 

Based QRS-Complex Detection Technique 

The proposed technique is tested with three different types of ECG signals from the MIT-BIH 

arrhythmia database and QT database. The ECG signal duration in short time data is for ten 

seconds, medium data is one-minute, and full-length data is one-hour. 

Further, false negative (FN) and false positive (FP) detections are also used to evaluate the 

detection performance. FP is the number of extra detected waves, and FN is the number of 

missed waves. Further, FN and FP are used to compute the sensitivity (Se %), positive 

predictivity (+P %), data error rate (DER %), the probability of missed detection (PD), and the 

probability of false alarms (PFA). 

QRS-complex detection results for all records and the different size of data, namely, ten seconds, 

one minute, and full-length ECG data of MIT-BIH arrhythmia is summarized in Table 5.1, Table 

5.2 and Table 5.3, respectively. 

As shown in Table 5.1, the proposed soft-thresholding based QRS-complex detector achieves 

the sensitivity and positive predictivity of 99.31% and 99.65% with the MIT-BIH arrhythmia 

database of ten seconds. 108.mat and 214.mat signals from the MIT-BIH arrhythmia database 

contains maximum noise [21]. The proposed soft-thresholding based QRS-complex detector 

achieves the sensitivity and positive predictivity of 90.90 % and 100 % on 108.mat and 100 % 

sensitivity and 100 % positive predictivity on 214.mat. 
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Table 5. 1: Performance of the proposed soft-thresholding based QRS-complex detection technique using ten-

second MIT-BIH database 

Record No. Total (beats)  TP FN FP Se (%) +P (%) DER (%) 

100 13 13 0 0 100 100 0 

101 11 11 0 0 100 100 0 

102 12 12 0 0 100 100 0 

103 11 11 0 0 100 100 0 

104 13 13 0 0 100 100 0 

105 14 14 0 0 100 100 0 

106 10 10 0 0 100 100 0 

107 12 11 1 0 91.66 100 0.83 

108 11 10 1 0 90.90 100 0.09 

109 16 16 0 1 100 94.11 0.06 

111 12 12 0 0 100 100 0 

112 14 14 0 0 100 100 0 

113 09 09 0 0 100 100 0 

114 10 10 0 0 100 100 0 

115 10 10 0 0 100 100 0 

116 14 14 0 0 100 100 0 

117 9 9 0 0 100 100 0 

118 12 12 0 0 100 100 0 

119 10 10 0 0 100 100 0 

121 10 10 0 0 100 100 0 

122 15 15 0 0 100 100 0 

123 9 8 1 0 90 100 0.11 

124 8 8 0 0 100 100 0 

200 15 15 0 0 100 100 0 

201 14 14 0 0 100 100 0 

202 7 7 0 0 100 100 0 

205 15 15 0 0 100 100 0 
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Record No. Total (beats)  TP FN FP Se (%) +P (%) DER (%) 

207 10 10 0 0 100 100 0 

208 13 12 1 0 92.30 100 0.07 

209 15 15 0 0 100 100 0 

210 16 16 0 0 100 100 0 

212 15 15 0 0 100 100 0 

213 18 18 0 0 100 100 0 

214 13 13 0 0 100 100 0 

215 18 18 0 0 100 100 0 

217 12 12 0 0 100 100 0 

219 13 13 0 0 100 100 0 

220 12 12 0 0 100 100 0 

221 13 13 0 0 100 100 0 

222 13 13 0 0 100 100 0 

223 13 13 0 0 100 100 0 

228 12 12 0 0 100 100 0 

230 14 14 0 0 100 100 0 

231 10 10 0 0 100 100 0 

232 9 9 0 1 100 90 0.11 

233 17 17 0 0 100 100 0 

234 15 15 0 0 100 100 0 

Total 587 583 4 2 99.31 99.65 1.02 

 

From Table 5.2, the proposed soft-thresholding based QRS-complex detector achieves 

sensitivity and positive predictivity of 99.65% and 99.65% with the MIT-BIH arrhythmia 

database of one minute. Also, the proposed soft-thresholding based QRS-complex detector 

achieves sensitivity and positive predictivity of 100 % on 108.mat and 100 % sensitivity and 

positive predictivity on 214.mat to existing detection algorithms. Summary of Se, +P, and DER 

of the proposed soft-thresholding based QRS-complex detection technique with different sizes 

of ECG dataset is shown in Fig. 5.1. 
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Table 5. 2: Performance of the proposed soft-thresholding based QRS-complex detection technique using one-

minute MIT-BIH database 

Record No. Total (beats) TP FN FP Se (%) +P (%) DER (%) 

100 74 74 0 0 100 100 0 

101 70 70 0 1 100 98.59 0.01 

102 73 73 0 0 100 100 0 

103 70 70 0 0 100 100 0 

104 74 73 1 0 98.64 100 0.01 

105 83 83 0 0 100 100 0 

106 69 67 2 0 97.10 100 0.02 

107 71 71 0 0 100 100 0 

108 58 58 0 0 100 100 0 

109 91 91 0 0 100 100 0 

111 69 69 0 0 100 100 0 

112 85 85 0 0 100 100 0 

113 58 58 0 0 100 100 0 

114 55 55 0 0 100 100 0 

115 63 63 0 0 100 100 0 

116 79 79 0 0 100 100 0 

117 50 50 0 0 100 100 0 

118 73 73 0 0 100 100 0 

119 65 65 0 0 100 100 0 

121 60 59 1 0 98.33 100 0.01 

122 87 87 0 0 100 100 0 

123 49 48 1 0 97.95 100 0.02 

124 50 50 0 0 100 100 0 

202 53 53 0 0 100 100 0 

205 89 89 0 0 100 100 0 

209 92 92 0 0 100 100 0 

210 91 89 2 0 97.80 100 0.02 
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Record No. Total (beats) TP FN FP Se (%) +P (%) DER (%) 

212 90 90 0 0 100 100 0 

213 111 111 0 0 100 100 0 

214 76 76 0 0 100 100 0 

215 106 106 1 4 99.06 96.36 0.04 

217 72 72 0 0 100 100 0 

219 74 74 0 0 100 100 0 

220 72 72 0 0 100 100 0 

221 79 78 1 0 98.73 100 0.01 

222 75 75 0 0 100 100 0 

223 80 80 0 0 100 100 0 

228 71 69 2 3 97.18 95.83 0.07 

230 79 79 0 0 100 100 0 

231 63 63 0 0 100 100 0 

233 103 103 0 0 100 100 0 

234 92 92 0 0 100 100 0 

Total 3144 3140 11 11 99.65 99.65 0.006 

 

Fig. 5. 1 Comparison chart of Se, +P, and DER of the proposed soft-thresholding based QRS-complex detection 

technique with different size of ECG dataset 
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From Fig. 5.1, it is noticed that the proposed soft-thresholding based QRS-complex detection 

technique achieves a 100% sensitivity and 100% positive predictivity on the maximum number 

of ECG signals of different length. From Table 5.3, the proposed soft-thresholding-based QRS-

complex detector achieves the highest sensitivity and positive predictivity of 99.75% and 

99.98%, respectively, with the MIT-BIH arrhythmia database of one-hour length. 

Table 5. 3: Performance of the proposed soft-thresholding based QRS-complex detection technique using the 

one-hour MIT-BIH database 

Record No. Total Beats TP  FN  FP  Se (%) +P (%) DER (%) 

100 

 

2273 2273 0 0 100 100 0 

102 

 

2191 2187 4 0 99.8174 100 0.1826 

103 

 

2090 2083 7 0 99.665 100 0.3349 

107 

 

2139 2136 3 0 99.8597 100 0.1403 

113 

 

1795 1795 0 0 100 100 0 

117 

 

1538 1533 5 3 99.6749 99.8047 0.5202 

122 

 

2478 2476 2 0 99.9193 100 0.0807 

123 

 

1518 1518 0 0 100 100 0 

220 

 

2068 2048 20 0 99.0329 100 0.9671 

234 

 

2763 2752 11 0 99.6019 100 0.3951 

Total 20853 20801 52 3 99.75 99.98 0.26 

 

(a) 

 

(b) 

Fig. 5. 2 (a) 108 series of input ECG signal taken from the MIT-BIH arrhythmia database, (b) detected QRS-

complexes 
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The performance of the proposed soft-thresholding based QRS-complex detector under noisy 

conditions is shown in Figure 5.2. 

Fig. 5.2 (a) pictorially represents the 108.mat input ECG signal taken from the MIT-BIH 

arrhythmia database. Fig. 5.2 (b) shows the detected QRS-complexes in ten seconds of ECG 

data. Table 5.1 also shows the same number of QRS-complexes for the 108.mat ECG data. 

Table 5. 4: Performance comparison of proposed soft thresholding technique with existing techniques 

Method Se (%) +P (%) 

Soft-thresholding (Proposed) 99.75 99.98 

Multirate processing using filter banks [30] 99.59 99.56 

Quadratic spline wavelet [50] 99.31 99.70 

Genetic algorithm [99] 99.60 99.51 

Wavelet denoising [131] 99.50 99.49 

Real-time [173] 97.63 97.33 

Mathematical morphology [197] 97.80 97.80 

As shown in Table 5.4, the proposed soft-thresholding technique has a better detection 

performance compared to existing techniques. Some techniques like genetic algorithm, 

multirate processing using filter bank also offer excellent performance, but their computational 

complexities are relatively high compared to the proposed technique. The proposed soft-

thresholding technique requires less hardware when compared to the existing techniques like 

[66], [70]. Usage of modified demand-based wavelet filter bank architecture and linear phase 

structure realization are the main reasons for the hardware complexity reduction. Hence, the 

proposed soft-thresholding technique is better for both implantable as well as wearable cardiac 

pacemaker applications. 

5.1.2 Dynamic Dual Thresholding Based ECG Signal Detection  

The performance of the soft thresholding technique has been evaluated on three different ECG 

data types, namely, low-quality versus high-quality ECG data, normal ECG data versus 

arrhythmic ECG data and normal ECG data versus paced rhythm ECG data. For the low-quality 

and high-quality ECG data, the soft thresholding technique achieves a higher detection 
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accuracy. The soft thresholding technique has some limitations to differentiate between normal 

ECG data and abnormal ECG data. Some ECG data (107.mat, 109.mat, and 219.mat) from MIT-

BIH arrhythmia database are recommended as normal ECG data by Physicians, but the soft 

thresholding technique detects all these ECG data as abnormal ECG data. Hence, a precise, 

exact, and coherent ECG signal detection algorithm is required. The dynamic dual thresholding 

technique-based ECG signal detection can overcome the problem mentioned above. Variable 

threshold value forms the central part of the dynamic dual thresholding method [178]. Flowchart 

of the dynamic dual thresholding technique-based ECG signal detector is shown in Fig. 5.3. The 

results of this work are published in [217]. The methodology used to implement the proposed 

dynamic dual thresholding-based ECG signal detection is as follows. 

 

Fig. 5. 3 Flowchart of the proposed dynamic dual thresholding ECG detection technique 

Two different threshold values are selected to which a booth multiplier’s output is compared to 

detect different waves in the ECG signal. In this work, the variable threshold method is used to 

detect different waves in an ECG signal. The threshold value to detect QRS-complex (Vth2) is 

set at 0.75 times that of the maximum value of booth multiplier’s output. To detect P-wave and 

T-wave of the ECG signal, 0.25 times the maximum value of booth multiplier’s output is 



   

94 
 

selected as the threshold value (Vth1). The reasons for selecting the above-said threshold values 

are as follows. Different values of the threshold are used to detect QRS-complex, P-wave, and 

T-wave. The threshold value should neither result in false wave detection nor should miss a 

wave. Further, setting a large value of threshold results in missed waves thus increasing the error 

rate, whereas, setting a small value of threshold results in increased computation complexity 

and false detection, thus reducing the detection accuracy of the system. Threshold values other 

than the used in this work is either detecting an extra number of ECG waves or detecting less 

number of ECG waves, thus reducing the detection accuracy of the algorithm. 

Then after, windowing is applied to the first 180 samples of the ECG signal. The reason for the 

selection of 180 samples is that none of the ECG signals has an R-R wave interval less than 0.5 

seconds or heartrate of 120 beats per minute. Then all the waves within the selected window are 

compared with the threshold values. If the amplitude of a wave is higher than the threshold value 

Vth2, the wave is counted as QRS-complex. Those waves whose value lies between Vth1 and Vth2 

are counted as P-waves. After the detection of one QRS-complex or P-wave, the next 180 

samples are left to avoid false detection. Then again, a window of next 180 samples are selected, 

and the same procedure is repeated until the end of the ECG signal. By calculating the time 

difference between two successive R waves, the heartrate (HR) can be calculated by using the 

relation given by Eq. (5.2). 

 
60

Average valueof R-R interval
HR

wave
=   (5.2) 

Heartrate helps to measure the physiological condition of the subject. If the number of waves 

exceeds above 100 beats per minute (bpm) regularly, then the subject is suffering from sinus 

tachycardia, and if the number of waves is below 50 bpm, then the subject is suffering from 

sinus bradycardia. Thus, the proposed dynamic dual thresholding can detect the presence of a 

particular sinus arrhythmia in the subject. 

5.1.3 Simulation Results and Performance Evaluation of the Proposed Dynamic Dual 

Thresholding Based ECG Signal Detection Technique 

A dynamic dual thresholding technique-based ECG signal detector is proposed to overcome the 

shortcomings related to the soft-thresholding technique. Table 5.5 summarize the ECG signal 



   

95 
 

detection results for all recordings of different size of ECG signals ten seconds, one minute, full 

length ECG signal of different ECG databases. 

Table 5. 5: Measured detection accuracy of proposed dynamic dual thresholding-based ECG detector on 

different ECG databases 

ECG 

Database 

Duration Total 

Waves 

Se (%) +P 

(%) 

DER 

(%) 

Avg. R-R 

Interval 

(Sec.) 

Heartrate 

MIT-BIH  10 seconds 532 99.43 99.43 0.011 0.8711 73.77 

MIT-BIH One minute 2871 99.86 99.86 0.002 0.8715 70.65 

MIT-BIH One hour 96581 99.95 99.92 0.001 0.8711 73.77 

Fantasia One hour 19445 99.96 99.84 0.002 0.8307 72.22 

Apnea DB One hour 703750 99.94 99.85 0.001 0.9280 64.65 

ADB One hour 197009 99.80 99.72 0.004 0.8388 71.59 

QT-DB One minute 124 99.19 98.40 0.020 0.6327 96.30 

*DB: Database,  

Table 5. 6: Performance comparison of proposed dynamic dual thresholding-based ECG detector with existing 

ECG detectors 

Method Se (%) +P (%) 

Dynamic dual thresholding (Proposed) 99.95 99.98 

Multirate processing using filter Banks [30] 99.59 99.56 

Genetic algorithm [50] 99.60 99.51 

Quadratic spline wavelet [99] 99.31 99.70 

Elgendi et al. [141] 99.90 99.84 

Elgendi et al. [166] 99.79 99.88 

Multiscale morphology [179] 99.81 99.80 

Elgendi et al. [188] 99.78 99.87 

Elgendi et al. [198] 99.90 99.56 

Bandpass filtering/ search-back [199] 99.69 99.77 

Pulse train approach [200] 98.58 99.55 

Soft thresholding [216] 99.75 99.98 



   

96 
 

From Table 5.5, the proposed dynamic dual thresholding-based ECG detector achieves an 

average sensitivity ranging from 99.43% - 99.96% and average positive predictivity ranging 

from 99.43%-99.92% with the different ECG databases of different durations. Fig. 5.4 shows 

the performance of the proposed dynamic-dual thresholding-based ECG signal detection 

technique.  

 

(a) 

 

(b) 

 

(c) 

Fig. 5. 4 Outputs of proposed ECG detector, (a) with 10 seconds of MIT-BIH data, (b) with 1 minute of MIT-

BIH data, (c) with 10 minutes of QT data 
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Comparison of dynamic-dual thresholding-based ECG detection technique with the existing 

techniques is discussed in Table 5.6.  

From Table 5.6, it is evident that the dynamic dual thresholding-based ECG signal detection 

technique has better performance compared to the existing ECG signal detection techniques. 

Table 5.7 shows the P-wave detection performance of the proposed dynamic-dual thresholding 

based ECG signal detection technique. 

Table 5. 7: measured detection accuracy of the proposed dynamic dual thresholding-based p-wave detector on 

full-length ECG signal 

Record No. Total  TP  FN  FP  Se (%) +P (%) DER (%) 

100 2273 2273 0 0 100 100 0 

101 1865 1865 0 0 100 100 0 

102 2187 2187 0 0 100 100 0 

103 2084 2084 0 1 100 99.95 0.004 

104 2230 2229 0 0 100 100 0 

105 2572 2566 6 25 99.76 99.03 0.012 

106 2027 2027 0 0 100 100 0 

107 2137 2137 0 0 100 100 0 

108 1774 1771 3 0 99.83 100 0.001 

109 2532 2532 0 0 100 100 0 

111 2124 2124 0 0 100 100 0 

112 2539 2539 0 0 100 100 0 

113 1795 1795 0 0 100 100 0 

114 1879 1877 2 2 99.89 99.89 0.002 

115 1953 1953 0 0 100 100 0 

116 2412 2402 10 0 99.58 100 0.004 

117 1535 1535 0 0 100 100 0 

118 2278 2278 0 0 100 100 0 

119 1987 1987 0 0 100 100 0 

121 1863 1863 0 0 100 100 0 
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Record No. Total  TP  FN  FP  Se (%) +P (%) DER (%) 

122 2476 2476 0 0 100 100 0 

123 1518 1516 2 0 99.86 100 0.003 

124 1619 1619 0 0 100 100 0 

200 2601 2601 0 0 100 100 0 

201 1963 1963 0 40 100 98 0.02 

202 2136 2136 0 0 100 100 0 

205 2656 2656 0 0 100 100 0 

207 2332 2324 8 0 99.65 100 0 

208 2301 2301 0 0 100 100 0 

209 3004 3004 0 0 100 100 0 

212 2748 2748 0 0 100 100 0 

213 3251 3251 0 0 100 100 0 

214 2265 2265 0 0 100 100 0 

215 3363 3363 0 0 100 100 0 

217 2209 2209 0 0 100 100 0 

219 2154 2154 0 0 100 100 0 

220 2048 2048 0 0 100 100 0 

221 2427 2426 1 3 99.95 99.87 0.001 

222 2483 2480 3 0 99.87 100 0.001 

223 2605 2605 0 0 100 100 0 

228 2053 2053 0 0 100 100 0 

231 1571 1571 0 0 100 100 0 

233 2426 2426 0 0 100 100 0 

234 2753 2753 0 0 100 100 0 

Total 96582 96546 35 71 99.96 99.92 0.001 

From Table 5.7, the proposed dynamic dual thresholding for P-wave detection algorithm 

achieves sensitivity and positive predictivity of 99.96% and 99.92%, respectively, with the MIT-

BIH arrhythmia database. Table 5.8 shows the detection performance of the T-wave.  
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From Table 5.8, the proposed dynamic dual thresholding for T-wave detection algorithm 

achieves the highest sensitivity and positive predictivity of 99.97% and 99.93%, respectively, 

with the MIT-BIH arrhythmia database. 

Table 5. 8: Measured detection accuracy of proposed dynamic dual thresholding-based T-wave detector on full-

length ECG signal 

Recording No. Total  TP FN FP Se (%) +P (%) DER (%) 

100 2274 2274 0 0 100 100 0 

101 1865 1865 0 0 100 100 0 

102 2188 2188 0 0 100 100 0 

103 2084 2084 0 1 100 99.95 0.004 

104 2230 2229 0 0 100 100 0 

105 2572 2568 4 20 99.84 99.22 0.009 

106 2027 2027 0 0 100 100 0 

107 2137 2137 0 0 100 100 0 

108 1774 1772 2 0 99.88 100 0.001 

109 2532 2532 0 0 100 100 0 

111 2125 2125 0 0 100 100 0 

112 2539 2539 0 0 100 100 0 

113 1795 1795 0 0 100 100 0 

114 1879 1877 2 2 99.89 99.89 0.002 

115 1953 1953 0 0 100 100 0 

116 2412 2410 2 0 99.91 100 0.0008 

117 1535 1535 0 0 100 100 0 

118 2278 2278 0 0 100 100 0 

119 1987 1987 0 0 100 100 0 

121 1863 1863 0 0 100 100 0 

122 2476 2476 0 0 100 100 0 

123 1518 1516 2 0 99.86 100 0.003 

124 1619 1619 0 0 100 100 0 

200 2601 2601 0 0 100 100 0 



   

100 
 

Recording No. Total  TP FN FP Se (%) +P (%) DER (%) 

201 1963 1963 0 40 100 98 0.02 

202 2136 2136 0 0 100 100 0 

205 2656 2656 0 0 100 100 0 

207 2332 2324 8 0 99.65 100 0 

208 2301 2301 0 0 100 100 0 

209 3005 3005 0 0 100 100 0 

212 2749 2749 0 0 100 100 0 

213 3251 3251 0 0 100 100 0 

214 2265 2265 0 0 100 100 0 

215 3363 3363 0 0 100 100 0 

217 2209 2209 0 0 100 100 0 

219 2154 2154 0 0 100 100 0 

220 2048 2048 0 0 100 100 0 

221 2427 2426 1 3 99.95 99.87 0.001 

222 2483 2480 3 0 99.87 100 0.001 

223 2605 2605 0 0 100 100 0 

228 2053 2053 0 0 100 100 0 

231 1571 1571 0 0 100 100 0 

234 2753 2753 0 0 100 100 0 

Total 96587 96562 25 65 99.97 99.93 0.0009 

The proposed dynamic dual thresholding method can detect P-wave, QRS-complex, and T-

wave, thus detecting the ECG wave. Further, the computational complexity of the proposed 

ECG detector is controlled with the help of data compression to achieve low power. The 

additional logic required for data compression is minimal. Hence, the proposed dynamic dual 

thresholding is better suited for ECG detection when compared to the existing techniques. 

5.1.4 Adaptive Thresholding Based ECG Signal Detection Technique 

The major disadvantage of dynamic dual thresholding is to effectively address the balance 

between missing ECG waves and false ECG wave detection. To overcome false wave detection 
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problem, an adaptive slope prediction based thresholding technique is used to detect different 

waves of an ECG signal. Two different threshold values, namely, the downward threshold (Vth1) 

and the upward threshold (Vth2) are selected with which the denoised ECG signal is compared 

to detect different waves in the ECG signal. Eq. (5.3) gives the downward threshold and upward 

threshold. Both the upward as well as downward threshold values are calculated using 

continuous assessment of the ECG signal peak and noise peak.  

 
th1

th2 th1

V 0.25( )

V 0.50V

NP SP NP= + −

=
  (5.3) 

Here, NP is the continuous assessment of the noise peak, and SP is the continuous assessment 

of the ECG signal peak. NP and SP  are continuously estimated by using Eq. (5.4). 

 
0.25 0.85 ,

0.25 0.85 ,

NP of overall peak of NP if overall peak is thenoise peak

SP of overall peak of SP if overall peak is the signal peak

= +

= +
  (5.4) 

Then denoised ECG signal is compared with both the threshold values. If the compared value is 

higher than Vth2, then the QRS-complex is identified, and a wave is counted. Those waves whose 

value lies between Vth1 and Vth2 are counted as a P-wave. All the other waves that may occur 

within the refractory period (0.2 seconds) are disregarded. This process is repeated until the end 

of the ECG signal.  By calculating the rising and falling edge of the detected wave, the actual 

presence of a wave can be determined. The process of proposed adaptive slope prediction 

threshold-based ECG signal detection is shown in Fig. 5.5. The results of this work are published 

in [210]. 

 

Fig. 5. 5 Proposed adaptive slope prediction threshold-based ECG detection 
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By calculating the time difference between two successive QRS-complexes, the heartrate in 

beats per minute (bpm) can be calculated by using Eq. (5.2). Physiological condition of a subject 

is measured by using the heartrate. If heartrate regularly exceeds 100 bpm, then the subject is 

suffering from sinus tachycardia, and if the heartrate is below 50 bpm, then the subject is 

suffering from sinus bradycardia. This system thus can identify the presence of particular sinus 

arrhythmia disease in the subject. 

5.1.5 Simulation Results and Performance Evaluation of the Proposed Adaptive 

Thresholding Based ECG Signal Detection Technique 

An adaptive slope prediction thresholding based ECG detector is proposed to overcome the 

concerns related to those mentioned above dynamic dual thresholding based ECG detector. The 

output of the proposed ECG detector is shown in Fig. 5.6. 

 

Fig. 5. 6 Output of the proposed adaptive slope prediction thresholding-based ECG detector 

Table 5. 9: performance evaluation of the proposed adaptive slope prediction thresholding-based ECG detector 

Type of ECG Beat Number of Beats TP FP FN +P (%) Error SE (%) 

Healthy 104363 104296 60 40 99.98 0.001 99.99 

MI 40182 40150 30 20 99.98 0.0014 99.99 

CAD 41545 41496 41 32 99.98 0.0020 99.98 

CHF 89237 89177 42 38 99.99 0.0012 99.99 

Total 275327 275119 208 154 99.98 0.0013 99.98 
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* MI: Myocardial infarction, CAD: Coronary artery disease, CHF: Congestive Heart Failure.  

Performance evaluation of the proposed adaptive slope prediction thresholding-based ECG 

detector is depicted in Table 5.9. Total 275327 ECG beats out of which 104363 healthy beats, 

41545 coronary artery disease beats, 89237 Congestive Heart Failure beats, and 40182 

myocardial infarction beats are used to evaluate the performance of the proposed ECG detector. 

It is observed from Table 5.9 that the proposed adaptive slope prediction thresholding-based 

ECG detection technique achieves a sensitivity of 99.98%, positive predictivity of 99.98% and 

an overall error of 0.0013.  

Table 5.10 compares the ECG wave detection performance of the proposed adaptive slope 

prediction thresholding-based ECG detector with the existing detectors. 

Table 5. 10: Comparison of the proposed adaptive slope prediction thresholding-based ECG detector with the 

existing detectors 

Method SE (%) +P (%) Error 

Adaptive slope prediction (Proposed) 99.98 99.98 0.0013 

Soft thresholding proposed in this thesis [216] 99.75 99.98 NR 

Dynamic dual thresholding proposed in this thesis 

[217] 

99.95 99.98 NR 

Pan Tompkins [20] 99.74 99.60 NR 

Genetic algorithm [50]  99.61 99.79 NR 

Quadratic spline wavelet [99] 99.29 99.72 NR 

Faezipour et al. [127] 99.79 99.78 0.4000 

Wavelet denoising [131] 99.56 99.53 NR 

Search-back [199] 99.72 99.79 NR 

Pulse train approach [200] 99.57 99.56 NR 

Cvikl et al. [201] 99.81 99.79 NR 

Iliev et al. [202] 99.16 99.53 NR 

It is observed from Table 5.10 that the proposed detector with an adaptive slope prediction 

threshold is capable of accurately distinguishing between healthy, myocardial infarction, 

congestive heart failure and coronary artery disease subjects with sensitivity, positive 

predictivity, and error of 99.94%, 99.92% and 0.0013 respectively. The key benefit of an 

adaptive slope predication threshold based detector is that the false wave detection is controlled 

by comparing the rising and falling edge of the ECG signal. 



   

104 
 

5.2 LOSSLESS DATA COMPRESSION 

Long-term monitoring of the ECG signal is highly desirable for those subjects who are suffering 

from cardiovascular diseases [12, 179]. Few long term ECG monitoring systems are presented 

in the past few years. An ECG monitoring system is mainly categorized into recording and 

analyzing systems. A recording system is primarily used for acquisition, processing, and 

wireless transmission of an ECG signal [180]. Whereas, the analyzing system is used to extract 

the vital features of an ECG signal. Raw data transmission used in early ECG recording systems 

[13] consumes a large amount of data as raw ECG data is large in quantity thus requiring high 

data rate, hence not suitable for long term ECG signal monitoring. To deal with the substantial 

power requirements of ECG signal transmission, the ECG signals need compression to minimize 

the data transfer rate for transmission, thus reducing the power requirements of the system. To 

achieve a high compression ratio, lossy data compression techniques are considered. The ECG 

signal reconstructed after lossy data compression results in an ECG signal that contains a sizable 

amount of noise, and crucial diagnostic data is lost, thus lacking regulatory conformity. Thus, 

Medical applications demand the usage of lossless data compression techniques. The world of 

wearable sensors is experiencing new waves with high-efficiency, decreased power operation, 

and modest convolution in the application. Hence, it is much required to find a better fit and 

balance between the complexity and compression ratio (CR). Hence, data compression is an 

essential requirement to make the system power efficient. 

Many lossless ECG compression techniques presented in the literature have focused on 

achieving a high compression ratio. Here in the proposed work, various data compression 

techniques, namely wavelet transform, Huffman coding/simple predictor, Huffman 

coding/adaptive predictor, slope predictor/fixed length packaging, and run-length encoding, are 

tested. Run-length encoding is chosen based on its simplicity and high compression ratio. In this 

method, the detected QRS-complexes are represented by “1” and “0” represent the rest of the 

data. This data is then compressed by replacing the zeros between two waves by the number of 

zeros between the waves. Run length encoding (RLE) is a well known, simple, and quick form 

of lossless data compression technique which offers a significant amount of compression for a 

specific type of data stream (in which the same data value occurs in many consecutive data 

elements). The run length encoding decreases the size of a given signal, while at the same time 
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not losing any information. Each packet of run-length encoding consists of two components, 

namely, run_count, which denotes the number of characters in the run, and run_value, which 

indicates the common value of the characters in the run. For example, using RLE, the string of 

data “111111111111000011111110000001100” encoded after string compression results in 

1214071602120. This can be interpreted as a sequence of twelve 1s, four 0s, seven 1s, six 0s, 

two 1s, and two 0s. After that, RLE is applied to the binary matrix. 

 

Fig. 5. 7 Comparison of the proposed technique with existing techniques 

 

5.2.1 Simulation Results and Performance Evaluation of the Proposed RLE Based Lossless 

Data Compression Technique 

The proposed RLE based ECG data compression technique is tested using the QT database and 

the MIT-BIH arrhythmia database. Comparison of proposed RLE compression technique with 

existing techniques is shown in Fig. 5.7. The proposed RLE based lossless data compression 

Technique achieves a higher compression ratio. The proposed RLE based ECG data 

compression technique attains a high compression ratio of 17.1. The other existing data 

compression techniques provide a low compression ratio, which is 2.66 for statistical Huffman 

coding, 2.17 for selective Huffman coding, and 2.28 for wavelet-based data compression 



   

106 
 

technique. The performance of the algorithm is not compared for other statistical parameters 

like PRD, MAE, space-saving, and compression gain, to name a few. This work is published in 

[216]. 

5.2.2 LZMA Based Lossless Data Compression Technique 

Generally, RLE is not the best option for lossless ECG data compression because when no 

repeating values are present in the data string, it leads to increase in the number of bits and 

hence, decrease the compression ratio. Comparison of some lossless data compression 

techniques based on the three parameters, namely, compression ratio, compression speed, and 

memory usage, are presented in Table 5.11. 

Table 5. 11: Comparison of different data compression techniques 

Compression Technique 
Compression 

Speed 

Compression 

Ratio 
Memory Usage 

Lempel–Ziv–Welch (LZW) Medium Medium Medium 

Lempel–Ziv–Oberhumer 

(LZO) 

Fast Low Low 

Lempel–Ziv–Markov chain 

algorithm (LZMA) 

Medium High Low 

LZFX Fast Low Not Reported 

Bzip2 Medium High High 

LZ4 Fast Low Low 

Run-length encoding (RLE) Medium High Medium 

Huffman coding High Medium High 

It is observed from Table 5.11 that all three criteria cannot be achieved simultaneously. 

Considering the tradeoff among the above three criteria, LZMA data compression technique is 

used for the ECG data compression.  Block diagram representation of LZMA data compression 

technique used in this work is as shown in Fig. 5.8. LZMA data compression Technique has 

medium compression speed, high compression ratio, and low memory usage. The results of this 

work are published in [210]. 
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During compression, detected ECG samples are taken. Then, a window of eight ECG samples 

is selected, and the compression process is applied to the window. The first value of the window 

is unchanged, and the next bit value is subtracted from the previous bit value as described below 

Delta (0) = W(0) 

Delta (i) = W(i) – W(i-1) 

1 ≤ i ≤ 7 

End 

For example, a window of input ECG samples “5, 6, 7, 8, 9, 8, 7, 6” is selected, and the encoded 

output sequence is “5, 1, 1, 1, 1, -1, -1, -1”. 

 

Fig. 5. 8 Block diagram representation of LZMA data compression technique 

The delta encoding provides encoded output sequences in the form of differences from previous 

data, as shown in the example. Then the sliding dictionary algorithm is applied to the encoded 

output sequence of the delta encoding. Finally, the sliding dictionary output is used as an input 

of a range encoder which encodes the symbols of the ECG signal into numbers based on the 

frequency at which the symbols occur. 

5.2.3 Simulation Results and Performance Evaluation of the Proposed LZMA Lossless 

ECG Data Compression Technique 

The output of the proposed LZMA data compression technique is shown in Fig. 5.9. Fig. 5.9 (a) 

contains an input ECG signal with a sampling frequency of 360 Hz taken from the MIT-BIH 

arrhythmia database. The compressed ECG signal using LZMA data compression technique is 

shown in Fig. 5.9 (b). 
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(a) 

 

(b) 

Fig. 5. 9 Output of the proposed LZMA data compression technique, (a) input ECG signal, (b) compressed ECG 

signal 

Table 5. 12: performance comparison of proposed LZMA lossless ECG compression technique with existing 

techniques 

Method Compression ratio Quality score 

Lossy Compression Techniques  

m-AZTEC [203] 5.8 0.30 

Mukhopadhyay et al. [204] 15.83 2.0 

Mukhopadhyay et al. [205] 22.81 3.10 

Near-lossless Compression Techniques 

USZZQ and Huffman coding of DSM [156] 11.09 4.16 

SPIHIT [206] 8.06 6.78 

Lossless Compression Techniques 

LZMA (Proposed) 88.89 44445 

Rice Golomb Coding [102] 2.38 NR 

Sang Joon Lee et al. [207] 16.5 27.15 

 JPEG2000 [208] 8.05 9.29 
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The significant challenges involved in wireless data transmission are data conversion and power 

consumption. A lossless compression technique with high bit compression ratio is highly 

required. Here in the proposed work, LZMA lossless data compression technique is used, and 

comparison of the proposed data compression technique with the existing techniques is 

presented in Table 5.12. It is evident from Table 5.12 that the proposed LZMA based ECG data 

compression technique has a high compression ratio, and quality score. 

5.2.4 Biorthogonal 3.1 Wavelet Transform Based Lossless ECG Data Compression 

Technique 

It is found that using two different approaches for ECG signal detection and compression 

increases the overall system complexity. Hence, the wavelet transform is selected for ECG 

signal detection and compression. The wavelet transform is extensively used in ECG signal 

compression due to the inherent irregularities in the ECG signal. DWT is preferred over CWT 

because the information stored in the coefficient of DWT is not repeated. Also, DWT allows a  

complete reconstruction of the ECG signal without any loss. These properties of DWT 

motivated to develop a wavelet-based ECG signal compression algorithm. Different wavelet 

transforms, namely, Haar wavelet transform, Daubechies wavelet transform, biorthogonal 

wavelet transform, reverse biorthogonal wavelet transform are available in the literature. 

Therefore, selecting an efficient wavelet transform is an essential requirement. 

As the shape of the modified biorthogonal 3.1 wavelet transform resembles that of an ECG 

signal, is used for the ECG compression. Further, modified biorthogonal 3.1 wavelet transform 

can construct symmetrical wavelet functions, generate different multi-resolution analyses, 

higher SNR, and only a few wavelet coefficients, make it suitable for ECG applications. The 

process of ECG compression is as follows. Initially, for the decomposition of detected ECG 

signal, the detected ECG signal is passed through a parallel combination of a specially designed 

lowpass and highpass filters called scaling function and wavelet function. The output of both 

the lowpass and highpass filters are then down sampled by two, which provides a band of 0 – 

180 Hz for the lowpass filter and 180 - 360 Hz for a highpass filter, named as wavelet filter 

bank-one (WFB01). 
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Further, the downsampled output of lowpass filter is passed through a parallel combination of 

lowpass and highpass filters. Similarly, the outputs of lowpass and highpass filters are 

downsampled by two, which provide a frequency band of 0 - 90 Hz for lowpass filter and 90 - 

180 Hz for highpass filter, called as wavelet filter bank-two (WFB02). The same procedure is 

repeated until wavelet filter bank-four (WFB04), which provides a frequency band of 0 - 22.5 

Hz for lowpass filter and 22.5 – 45 Hz for a highpass filter is achieved. 

The architecture of a WFB plays a significant role while compressing an ECG signal. Various 

wavelet filter bank architectures are available for the ECG signal compression, namely 

decimator based wavelet filter bank, undecimator based wavelet filter bank architecture. The 

undecimator based wavelet filter bank architecture has the advantage of translation-invariance 

over decimator based wavelet filter bank. The requirement of a large number of registers, delay 

elements, adders, and multipliers is the significant drawback of the undecimator wavelet filter 

bank architecture. To reduce the number of delay elements, adders, and multipliers; in the 

present work, lowpass and highpass filters are realized using a linear phase structure realization. 

The undecimator wavelet filter bank architecture with linear phase structure realization is shown 

in Fig. 5.10. This work is published in [217].  

 

Fig. 5. 10 Compression of detected ECG signal using undecimator wavelet filter bank architecture 

After wavelet decomposition, run-length encoding (RLE) technique is used for further data 

compression. In this method, the detected QRS-complexes are represented by ‘1’ and ‘0’ 

represents the rest of the data. This data is then compressed by replacing a ‘0’ between two 

waves by the number of zeros between the waves.  
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The process of reconstruction of the transmitted ECG signal is as follows. The decomposed 

lowpass and highpass outputs say L4 and H4 are first upsampled by two and then passed through 

a parallel combination of lowpass and highpass filters. After that, the output of lowpass and 

highpass filters are added. This whole process is known as reconstruction. As shown in Fig. 

5.11, this process is repeated three more times to reconstruct the original ECG signal. 

 

Fig. 5. 11 Reconstruction of transmitted ECG signal using undecimator wavelet filter bank architecture 

5.2.5 Simulation Results and Performance Evaluation of the Proposed Biorthogonal 3.1 

Wavelet Transform Based Lossless ECG Data Compression Technique 

The performance of the proposed data compression algorithm is evaluated using CR. The 

proposed modified biorthogonal 3.1 wavelet transform and RLE based data compression 

algorithm achieve the highest CR of 16.271. In the proposed biorthogonal 3.1 wavelet transform 

and RLE based data compression algorithm, all the detected QRS-complexes are represented 

using 1’s, and the rest of the data is represented using 0, as shown in Fig. 5.12. 

 

Fig. 5. 12 The output of the compressed ECG data 
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The performance of the proposed modified biorthogonal 3.1 wavelet transform and RLE based 

lossless data compression algorithm with the existing algorithms are shown in Table 5.13. Table 

5.13 shows that the proposed modified biorthogonal 3.1 wavelet transform and RLE based 

compression algorithm results in a high CR of 16.271 compared to the existing data compression 

algorithms. 

The output of the proposed modified biorthogonal 3.1 wavelet transform based data 

compression algorithm is shown in Fig. 5.13. Fig. 5.14 shows the reconstructed ECG signal. 

Table 5. 13: Comparison of compression performance of proposed wavelet transform and RLE based technique 

with published works 

Compression Method Compression Ratio (CR) 

Proposed modified biorthogonal 3.1 + RLE 16.271 

Wavelet transform [11] 10.3 

Quadratic spline wavelet transform [100] 1 

Delta predictor [102] 2.38 

Huffman coding/Adaptive predictor [103] 2.43 

JQDC based [104] 2.28 

Elgendi et al. [141] 4.5 

Kumar et al. [153] 6.06 

Huffman coding/simple predictor [158] 1.92 

Fixed-length packaging [159] 2.25 

Elgendi et al. [198] 6 

Brajovic et al. [209] 6.2 

 

Fig. 5. 13 Output of the proposed modified biorthogonal 3.1 wavelet transform based data compression algorithm 
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Fig. 5. 14 Reconstructed ECG signal 

5.3 THREE-TAP WAVELET FILTER BANK BASED LOSSLESS ECG DATA 

COMPRESSION TECHNIQUE 

Current literature uses two-band WFBs to analyze ECG signals [181, 182]. Poor resolution (∆ω= 

π/2) of low and high-frequency bands during signal decomposition is the major drawback of 

two-band WFBs. In two-band WFBs, cascading and wavelet packet decomposition are required 

to improve the resolution of lower and higher frequency bands, respectively. Cascading 

increases the computation complexity of the design. To reduce the computation complexity, 

three-band WFBs with linear phase, less computational complexity, higher energy in high-

frequency bands and better frequency resolution of (∆ω= π/3) in lower and higher frequency 

bands are preferred over two-band WFBs [183]. 

 

Fig. 5. 15 Proposed three-tap biorthogonal wavelet filter bank-based ECG compression Technique 
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Fig. 5. 16 Proposed three-tap biorthogonal wavelet filter bank 

Literature has supported the involvement of three-band time-frequency localized WFBs in 

numerous applications, namely, classification of EEG signals [184], digital watermarking [185], 

and image denoising [186]. The advantages of combined time-frequency localized three-band 

biorthogonal WFB motivates us to compress the ECG signal using three-band WFBs. The 

objective of this study is to develop a computer-aided ECG compression algorithm to use in the 

real systems by evaluating the performance of combine time-frequency localized three-band 

biorthogonal WFBs on different performance evaluation metrics like compression ratio, quality 

score, compression time, MSE, signal-to-noise ratio (SNR), maximum absolute error, and 

percentage root-mean-square difference (PRD). The signal processing flow of the proposed 

ECG compression technique, the corresponding three-tap wavelet filter bank, and 

decomposition of ECG signal up to the fourth level are shown in Fig. 5.15, Fig. 5.16 and Fig. 

5.17, respectively. 

 

Fig. 5. 17 Decomposition of ECG signal up to the fourth level 
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The process used to compress the ECG signal is the same as used in [187] with some 

modifications proposed in the work. The modifications are as follows: digitized ECG signal is 

decomposed into four subbands using a novel combine time-frequency localized three-band 

biorthogonal WFB. The transfer function of lowpass, bandpass and highpass filters, 

respectively, are obtained as shown in Eq. (5.5), Eq. (5.6), and Eq. (5.7), respectively. 

 1 2 3 4

0( ) 0.0074 0.4559 0.7292 0.4559 0.0074H z z z z z− − − −=− + + + −   (5.5) 

 1 3 4

1( ) 0.0178 0.3588 0.3558 0.0178H z z z z− − −=− − − −   (5.6) 

 1 2 3 4

2( ) 0.0098 0.4125 0.1179 0.4125 0.0098H z z z z z− − − −= − + − +   (5.7) 

The decomposed ECG signal is adaptively thresholded, and the absolute values greater than the 

threshold are considered as digital high (logic high and represented as “1”) and all the other 

remaining values are considered as digital low (logic low and represented as “0”). The digitized 

data is then compressed using run-length encoding Technique. 

5.3.1 Simulation Results and Performance Evaluation of the Proposed Three-Tap Wavelet 

Filter Bank Based Lossless ECG Data Compression Technique  

Compression rate (CR), maximum absolute error (MAE), quality score (QS), root mean square 

error (RMSE), compression time and percentage root mean square difference (PRD) are the 

parameters used to demonstrate the validity of the novel approach.  

Table 5. 14: Performance evaluation of the proposed approach 

Performance Parameters Three-Tap WFB Kumar et al. [210] 

Average CR 22.61 18.89 

Average QS 18841 20.47 

Average Ct (ms) 327.29 494.22 

Average MAE 0.013 0.0002 

Average PRD 0.0015 NA 

Average RMSE 0.0016 0.029 

Performance results of the proposed three-tap WFB based ECG compression approach are 

summarized in Table 5.14, where the proposed three-tap WFB based approach achieves a better 
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result compared to the existing techniques in the literature [210]. The proposed design achieves 

an average CR, average QS, respectively, of 22.61 and 18841. Also, the proposed design has an 

average Ct, average MAE, average RMSE and PRD, respectively of, 327.29ms, 0.013, 0.0016, 

and 0.0015. 

The output of the proposed combine time-frequency localized three-band biorthogonal WFBs 

based ECG compression approach is shown in Fig. 5.18. Fig. 5.18 (a) is an input ECG signal 

having a sampling frequency of 100 Hz. Fig. 5.18 (b) represents the reconstructed ECG signal 

and Fig. 5.18 (c) represents the error between the original ECG signal and the compressed ECG 

signal. 

 

(a) 

 
(b) 

 

  
(c) 

Fig. 5. 18 Original ECG signal, (b) compressed ECG signal and (c) error 
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5.4 SUMMARY 

In this work, DER is used to evaluate the accuracy, Se is used to evaluate the ability to detect 

true waves of the proposed algorithm, and +P is used to evaluate the ability to differentiate 

between true and false waves of the proposed algorithm. Unlike previous articles in the literature 

[11, 70, 76, 104, 102, 103, 158, 159, 211], in this work, the performance of ECG signal detection 

algorithms is mainly assessed for detection accuracy and circuit complexity. In the available 

literature, some parameters like efficiency, parameter choice, and robustness to noise are not 

considered while evaluating the performance of an ECG detector. There are many algorithms 

described in the literature that show unusually high detection performance with the total number 

of detected QRS-complexes but are not reliable as they cannot detect ECG signals with noise. 

The use of adaptive slope prediction threshold values in the ECG detector showed excellent 

performance on different databases, achieving sensitivity and specificity of 99.94% and 99.92% 

respectively on 96542 annotated beats, and an error of 0.0013 %. 

Also, the use of two different techniques for ECG signal denoising, ECG signal detection, and 

data compression results in higher overall system complexity. Hence, a combine approach for 

ECG signal denoising, ECG signal detection, and data compression is proposed. Proposed is a 

combine time-frequency localized three-tap biorthogonal WFB, adaptive thresholding and 

modified RLE based method for ECG compression. According to extensive experimental 

simulations, the proposed approach gives an excellent performance. The proposed algorithm 

gains a high CR compare to other existing algorithms. A combine time-frequency localized 

three-tap modified biorthogonal 3.1 WFB based lossless data compression achieves a high CR 

of 22.61. To best of our knowledge, this is the first of its kind combine ECG denoising, ECG 

detection, lossless data compression algorithm for cardiac pacemaker system.  
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CHAPTER 6 

FPGA IMPLEMENTATION OF COMBINE ECG SIGNAL 

DENOISING, PEAK DETECTION TECHNIQUE FOR 

CARDIAC PACEMAKER SYSTEMS 

Different medical research fields are marking their importance in the development of 

cardiovascular devices for monitoring and regulating symptoms of heart diseases [212]. 

Wearable ECG monitoring devices are going to become a norm, and the research has taken the 

nucleus of every medical research study on CVDs. Medical practitioners are widely open in 

accepting the usage of wearable ECG devices for biosignal acquisitions, as a better patient 

examining and supervising device in real-time. Medical institutions require an automated 

cardiac function assessment to improve conventional cardiovascular analysis. Holter devices are 

incapable of providing real-time diagnose and information of arrhythmia, thus limiting their 

usage in critical conditions. Hence, there is an immediate requirement to develop energy-

efficient ECG detection algorithms for implantable and portable cardiac devices. Block diagram 

of an implantable/portable cardiac device is represented in Fig. 6.1. 

 

Fig. 6.1 Block diagram representation of the implantable/portable cardiac device 

Periodic and administered electric stimulus made the implantable device a reality in today’s 

globally emerging world of portable and implantable cardiac devices. The present implantable 
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and portable cardiac pacemakers are bulky, and expensive so not within reach of many. Thus, 

to become a real lifesaver, portable, and implantable cardiac pacemaker needs to be cheap and 

yet reliable. The new archetype of these portable devices requires higher circuit densities and 

technological breakthroughs so that all the lacunas like single-chamber, asynchronous, non-

programmable pacing can be left behind. Technology adds more flavor and variations in the 

device with benefits like dual-chamber multi-programmability for enhanced efficiency and 

reliability. Such newer and advanced devices have amplified the storage of important medical 

data for a much reliable and accurate diagnosis. The contemporary pacing system has three 

integral components: a pulse generator, lead, and programmer as part of its device architecture. 

The pulse generator provides a real pulse to the device and contains energy management system. 

With complex circuits sensing electrical activity of the heart, which composes and generates 

suitable patterned response leading to stimulus and a transceiver. The channel from the 

generator to the heart is connected through a thin insulated wire responsible for transferring and 

sending indelible cardiac signals back to the generator.   

Various literature discusses power-efficient ECG signal detection techniques. An extensive 

review of the ECG detection techniques presented till date is available in [61, 63-65, 117]. 

Different research groups introduced various ECG signal detection techniques based on time-

domain [110, 213-214], ECG morphology (neural network) [26, 62, 215], time-frequency 

(Hilbert transform, wavelet transform) [216-220], and some combined algorithms (Bandpass 

filtering and wavelet transform) [11]. The first real-time ECG signal detection technique 

presented by J. Pan [20] was based on the time-domain analysis. In this technique, high order 

bandpass filter and thresholding technique are utilized to detect various waves of an ECG signal. 

The major difficulty encountered with the time domain-based ECG signal detection techniques 

is that, if these techniques are implemented using finite impulse response filters, computational 

delay and ringing effects are caused due to the long impulse response. 

On the other hand, infinite impulse response filter can cause non-linear phase distortion. The 

issues mentioned above are addressed using zero-phase bidirectional filters. However, the 

problem of tuning the bandwidth of the filter remains an issue. In order to reject the time-varying 

noises and retain the ECG signal features of the same frequency range, adaptive filters have 

been utilized in [221-223]. These adaptive filtering techniques require models of different noises 

to generate reference signals. The need for reference signals increases the computational 
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complexity of the algorithm. The other disadvantages of adaptive algorithms are low 

convergence speed and fixed step size. 

Further, ECG signal morphology and combined ECG signal detection techniques have been 

presented to achieve high signal detection accuracy. Implementing these techniques on the 

integrated circuit is too complicated. Time-frequency analysis techniques, namely, Hilbert 

transform, empirical mode decomposition, and its modified versions, wavelet transform, are 

also used to analyze ECG signals. As for ECG signal detection, the performance of wavelet 

transform technique is far superior to Hilbert transform or empirical mode decomposition in 

terms of time-frequency resolution and thus can provide better results. 

In this chapter, a biorthogonal wavelet transform based modified wavelet filter bank (WFB) 

[210] to suppress the various low, and high-frequency noises present in the ECG signal is 

implemented on field-programmable gate array (FPGA) platform. Quantitative measures, 

namely, Shannon entropy, uncertainty, cross-correlation, relative entropy, mutual information, 

and distribution error, are considered to select the optimal base wavelet. 

Steps involved in ECG signal denoising using wavelet transform are as follows: 

1. The approximation and the detail coefficients are obtained using multi-level wavelet 

decomposition. 

2. Using a discrete wavelet transform, the ECG signal was split into a lowpass sub-band 

(approximation level) and highpass sub-band (detail level). Further decomposing the 

approximation sub-band at multiple scales results in a fine-scale analysis. 

3. A suitable thresholding technique is selected by analyzing the detailed coefficients to 

reconstruct the ECG signal. 

After denoising the ECG signal using biorthogonal wavelet transform, an adaptive slope 

prediction criterion is utilized to check the location of different waves present in the ECG signal. 

The proposed ECG denoising and ECG signal detection technique is implemented using System 

Verilog HDL and synthesized in FPGA on Xilinx® Virtex®-7 platform.  

6.1 FPGA IMPLEMENTATION OF AN ECG SIGNAL DETECTION TECHNIQUE   

The input ECG signals are recorded using iworx® IX-TA-220 recorder. The ECG data is then 

digitized at 360 Hz sampling frequency with 11-bit resolution over a 10-mV range. Various other 
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ECG databases available on physionet.org [224] are also used to evaluate the performance of 

the proposed Technique. Based on different physiological conditions, input ECG data are then 

classified into normal ECG signal, ECG signal with right bundle branch block, ECG signal with 

left bundle branch block, ECG signal with premature atrial contraction and ECG signal with 

premature ventricular contraction [210]. Different white Gaussian noise signals are generated 

and added to the input ECG signal. Adding different Gaussian noise signals alters the input SNR 

of the ECG signal, thus allowing to test the proposed Technique for critical cases. Noisy ECG 

signals are then decomposed using biorthogonal wavelet filter bank to suppress the noises. The 

procedure for selecting wavelet and wavelet filter bank architecture are discussed below. 

6.2 SELECTION OF WAVELET TRANSFORM 

Wavelets developed in the recent past have paved the way for applying a wavelet transform to 

biomedical signal analysis. The study so far in the literature put forward a clear perspective for 

selecting the best-suited base wavelet for functional signal processing.  

Table 6. 1: Classification of wavelets based on their properties 

Wavelet Family Compact Support Regularity Symmetry 
Number of 

Vanishing Moments 

Haar Yes No Yes 1 

Daubechies Yes No No N 

Coiflets Yes No No 2N-1 

Symlets Yes No No N 

Biorthogonal / 

reverse 

biorthogonal 

Yes Yes Yes Nr 

Discrete Meyer 

wavelet 
No No Yes NA 

*: NA: Not Available, Nr: Reconstruction Order 

The fundamental properties support only the qualitative acceptance and fitment for a specific 

application, thus making a study of quantitative measures in the selection of base wavelet a 
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much-required approach. The present visual differentiation and contrast studies are not 

sufficient to accurately match the shape of a signal to that of a base wavelet transform, thus 

establishing an accurate quantitative matching is much required. The selection criteria of a 

wavelet suitable for ECG signal analysis made by considering important properties like 

symmetry, regularity, orthogonality, compact support, a support width, filter length, the shape 

of wavelet transform and number of vanishing moments. Classification of wavelet transforms 

on their main properties are listed in Table 6.1. From Table 6.1, it is clear that biorthogonal 

wavelet transform satisfies most of the properties required and selected for analyzing ECG 

signals. 

Mathematically, energy, Shannon entropy, cross-correlation, minimum description length, 

mutual information, and relative entropy are the quantitative measures used to evaluate the 

performance of base wavelet for ECG signal denoising [224]. 

6.2.1 Energy and Shannon Entropy: 

Features of a signal are characterized using the energy content of a signal. The energy content 

(Eenergy) of a signal s(t) is calculated using wavelet coefficients is given by Eq. (6.1). 

 

2

1

( ) ( , )
M

energy
k

E s t wt j k
=

=   (6.1) 

Here, M stands for the number of wavelet coefficients and wt(j,k) stands for the wavelet 

coefficients.  

Shannon entropy (Eentropys(t)) is a measure of uncertainty associated with random variables. 

Hence, Shannon entropy helps to describe the energy distribution of wavelet coefficients, which 

is calculated using Eq. (6.2). 
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1
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M
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k
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=

=−   (6.2) 

Here, 𝑃𝑘 stands for the energy probability distribution of wavelet coefficients and is calculated 

using Eq. (6.3).  
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With ∑ 𝑃𝑘 = 1𝑀
𝑘=1 , and if 𝑃𝑘 = 0, then 𝑃𝑘𝑙𝑜𝑔2𝑃𝑘 = 0. Then, entropy of the wavelet coefficients 

are bounded in the range 0 ≤ 𝐸𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑠(𝑡) ≤ 𝑙𝑜𝑔2𝑀. The base wavelet that satisfies the 

condition of maximum energy, minimum Shannon entropy should be the appropriate wavelet 

transform for ECG signal denoising. 

6.2.2 Mutual Information and Relative Entropy: 

The amount of information that signal ‘S’ contains about signal ‘X’ is measured using mutual 

information (Imutual) and is calculated using Eq. (6.4) 

 ( , ) log ( , ) ( , ) log[ ( ) ( )]mutual
s S x X s S x X

I p s x p s x p s x p s p x
   

= −    (6.4) 

The average mutual information between two signals S and X can be calculated by subtracting 

the entropy of pair from the sum of two self-entropies. The amount of shared information 

contained by signals S and X, respectively, in the wavelet thresholding, is represented by mutual 

information. 

The distance between the probability distributions of two signals S and X is measured using 

relative entropy (Erelative). Relative entropy is zero only when the probability distributions of 

both the signals are equal. 

 
( )

( )
( || ) ( ) logrelative

s S

p s

p x
E D S X p s



 
 
 

= =   (6.5) 

6.2.3 Cross-correlation: 

Cross-correlation (r) between the ECG signal and wavelet filter is computed as follows: 

 

( )( ) ( )( )

( )( ) ( )( )
2 2

*
i

i i

s i ms x i d mx

r

s i ms x i d mx

 
 

− − −

=

− − −



 
  (6.6) 

Here, ms is mean of signal S, and mx is mean of signal X, d is the delay. Mathematically, ms and 

mx are expressed using Eq. (6.7)  and Eq. (6.7), respectively. 

 ( )
1

1 n

i

ms s i
n =

=    (6.7) 
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 ( )
1

1 n

i

mx x i
n =

=    (6.8) 

Base wavelet with maximum cross correlation coefficients is selected in the proposed work. 

6.2.4 Minimum Description Length (MDL): 

Optimal base wavelet is the one which provides the shortest description of ECG data and base 

wavelet. Mathematically, MDL is expressed using Eq. (6.9). 

 
( ) ( ) 3

, min log log ;
2 2

0 ;1

p
m m

M
MDL p m p M a a

p M m N

= + −

   

  (6.9) 

Mathematically, am and am
(p) are expressed using relation in Eq. (6.10). 

 
( )

m m

p
m m

a W f

a a

=

=
  (6.10) 

Here Wm is the wavelet filter of length m, M is the signal length, N is the count of wavelet filter 

used, 
( )p

  is a thresholding operation parameter, and f is a discrete model which is 

mathematically expressed using Eq. (6.11).  

 f a g= +   (6.11) 

Here a is an unknown true signal to be estimated, g is noise. 

6.3 SELECTION OF WAVELET FILTER BANK ARCHITECTURE 

Various wavelet filter bank architectures for different signal processing applications have been 

presented in the existing literature. For a given precision, VLSI implementation of a wavelet 

filter bank architectures requires minimization of area, power, and memory. A conventional 

wavelet filter bank architecture is shown in Fig. 6.2. The performance of a conventional wavelet 

filter bank can be improved using undecimator and decimator-based wavelet filter banks [67, 

69]. Although the use of undecimator wavelet filter bank architecture provides the benefit of 

translation-invariance, the requirement of a large number of register and a constant clock are its 

major drawbacks. The limitations posed by an undecimator wavelet filter bank architecture are 
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overcome by using decimator wavelet filter bank architecture. However, the use of the parallel 

combination of lowpass and highpass filters to decompose signal at each level of decomposition 

requires nearly the same amount of hardware. Hence, a modified wavelet filter bank architecture 

to suppress different noises present in the ECG signal is required. 

 

(a) 

 

(b) 

Fig. 6.2 Signal decomposition using discrete wavelet transform (DWT), (a) 1-D, 1-level decomposition and 

reconstruction using DWT, (b) 1-D, m-level decomposition using DWT 

 

Fig. 6.3 Demand-based wavelet filter bank architecture 
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A demand-based wavelet filter bank architecture that decomposes the noisy ECG signal using 

only three lowpass filters is proposed in this present work. Fig. 6.3 represents a demand-based 

wavelet filter bank architecture. ECG signal ‘S’ is first filtered with a special lowpass filter to 

yield lowpass sub-bands. Half of the samples are discarded after filtering as per the Nyquist 

criterion. A filter which typically has a small number of coefficients results in a better 

computational performance. 

 

Fig. 6.4 Frequency response of ECG signal for different wavelet decompositions 

The filter can reconstruct the sub-bands while canceling any aliasing that occurs due to down-

sampling. The process repeats itself for the next two decomposition levels. Reason for 

modifying the wavelet filter bank architecture and selecting the third level of wavelet 

decomposition is as follows. As per the existing literature, the ECG signal has a frequency range 

of 0.05 -150 Hz and out of which QRS-complex has a frequency range of 5 - 32 Hz [166]. The 

proposed wavelet filter bank provides a frequency range of 0 - 45 Hz, which is similar to the 

frequency range of the QRS-complex, as shown in Fig. 6.4. Also, the proposed wavelet filter 

bank architecture decreases the hardware complexity by reducing the count of highpass filters 

from four to zero.   
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6.4 ECG SIGNAL DETECTION 

Many algorithms are presented in the literature to detect all the waves present in an ECG signal. 

Some of the ECG signal detection techniques are thresholding based, neural network, HMM, 

matched filter, zero- crossing, multiplication of backward difference, syntactic method, and 

singularity-based approach. Hence, finding a robust algorithm for ECG signal detection is 

difficult as most of the ECG signal detection methods are not universally accepted. Hence, 

continuous efforts are made by various researchers to improve the detection capabilities of the 

vital features of an ECG signal. The use of thresholding approaches for ECG wave detection is 

preferred due to the following reasons: simple, numerically efficient for the detection of 

different waves present in an ECG, minimum memory storage, and provide a high detection 

accuracy. The present work utilizes an adaptive slope prediction criterion to check the location 

of different waves present in the ECG signal. Similar slope predication criterion to detect 

different waves present in an ECG signal is used in [210]. In this work, a few changes have been 

made to improve the signal detection accuracy. If the proposed Technique enables us to find a 

QRS-complex in 1000 ms, that means the interval between two consecutive R-waves is too 

large. A large R-R wave interval represents irregularity in the heart’s functionality. Hence, the 

entire region of that time interval is presented (displayed) for diagnosis to the physician or 

cardiologist. 

6.5 SIMULATION AND RESULTS 

The effectiveness of the biorthogonal 3.1 wavelet transform and adaptive slope predication 

criterion-based ECG signal detection Technique is verified by evaluating its performance on 

different ECG signals (ECG signals of different duration, ECG signals of a different 

physiological condition, etc.). Firstly, the biorthogonal 3.1 wavelet transform is selected based 

on qualitative and quantitative measures. Then, wavelet decomposition level and wavelet filter 

bank architecture are selected to denoise the various artifacts present in an ECG. The metrics 

under consideration are hardware complexity, denoising capabilities, power consumption, and 

area. After removing the various noises, an adaptive slope prediction criterion is utilized to 

detect the location of different waves of an ECG signal. Finally, the performance of the proposed 

technique is compared with the existing literature. For a fair comparison, the performance of the 

existing ECG signal detection techniques is calculated using a similar environment.  
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6.5.1 Input ECG Data 

Input ECG data from physionet [21] and real-time ECG data recorded from iworx® IX-TA-220 

are utilized to test the performance of the proposed technique. Physionet.org provided a 

collection of physiological signals which are free for research. motion artifact contaminated 

ECG database, MIT-BIH arrhythmia database, and fantasia database from Physionet.org are 

used to evaluate the performance of the proposed technique. Classification of different ECG 

data from the MIT-BIH arrhythmia database is discussed in Table 6.2. in Table 6.2 ‘M’ indicates 

the male subject, and ‘F’ indicates female subjects. 

Table 6. 2: Classification of ECG data from the MIT-BIH arrhythmia database 

Class of Input Data 
Record (MIT-

BIH) 

Symbolic 

Representation 
Subject and Age 

Beat 

Count 

Normal ECG 

100, 103, 119, 

200, 209, 212, 

221 

N 

(M, 69), (F, 51), (M, 

64), (M, 62), (F, 32), 

(M, 83), (F, 51)  

75016 

Ventricular 

premature 

contraction 

119, 200, 221, 

233 
V 

(M, 64), (M, 62), 

(F, 51), (M, 64), 
7130 

Atrial premature beat 202, 232 A (M, 68), (F, 76) 2546 

Left bundle branch 

block 

109, 111, 207, 

214 
L 

(F, 64), (F, 47), (F, 

84), (M, 53) 
8075 

Right bundle branch 

block 

118, 124, 212, 

231 
R 

(M, 69), (M, 77), (F, 

32), (F, 72) 
7259 

Paced beat 107, 217 P (M, 63), (M, 65) 7028 

Fusion of paced and 

normal beat 
217 F (M, 65) 982 

The segregation above is done to test whether the proposed Technique is capable of 

distinguishing between normal and arrhythmic ECG signal, low-quality and high-quality ECG 

signal and normal and paced ECG signal. 
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6.5.2 ECG Signal Denoising 

Fig. 6.5 shows the performance of wavelet transforms using quantitative measures. Based on 

the quantitative measures, biorthogonal 3.1 wavelet transform is selected for the present work 

as it has maximum energy, minimum Shannon entropy, highest energy-to-entropy ratio, large 

mutual information, high relative entropy, and high normalized correlation coefficient. Further, 

the denoising capabilities of proposed demand-based biorthogonal 3.1 wavelets transform-based 

ECG denoising technique is evaluated using signal-to-noise ratio (SNR), percent root-mean-

square difference (PRD), and mean square error (MSE). Each of these metrics looks for the 

different qualitative and quantitative facets of the denoised signals with the help of the clean 

and noisy ECG. Ideally, high SNR value and low PRD/MSE values signify the better denoising 

capabilities.  
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(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 6.5 Performace of different wavelet transform on quantitative measures (a) energy, (b) Shannon entropy, (c) 

energy to Shannon entropy ratio, (d) mutual information, (e) relative entropy, and (f) normalized correlation 

coefficient 
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The results of the proposed method are compared with the four existing wavelet transform based 

ECG denoising methods [66, 70, 99, 226]. The denoising results of the techniques as mentioned 

earlier are compared for two separate ECG records from motion artifact contaminated ECG 

database at four different input SNR noise levels. Through close inspection, it is found that the 

proposed method generates much smoother denoised results and retains the critical morphology 

of ECG compared to existing approaches. Denoising performance of the various ECG denoising 

methods and their comparison with the proposed method for different input SNR is shown in 

Table 6.3.  

Table 6. 3: Comparison of denoising performance of the proposed ECG denoising methods with the existing 

techniques for different values of input SNR 

References [27] [28] [35] [36] Proposed 

Input SNR 

(-10 dB) 

Average 

SNR (dB) 
27.702 27.974 28.256 27.942 38.117 

Average 

PRD (%) 
22.19 21.71 24.11 23.85 12.08 

Average 

MSE 
0.120 0.113 0.092 0.102 0.036 

Input SNR 

(-5 dB) 

Average 

SNR (dB) 
28.111 29.108 30.280 29.353 40.964 

Average 

PRD (%) 
18.38 19.02 18.09 17.52 11.94 

Average 

MSE 
0.100 0.098 0.089 0.103 0.014 

Input SNR 

(5 dB) 

Average 

SNR (dB) 
30.372 31.979 32.120 32.312 47.592 

Average 

PRD (%) 
16.27 15.93 13.99 13.44 11.87 

Average 

MSE 
0.052 0.065 0.048 0.075 0.008 

Input SNR 

(10 dB) 

Average 

SNR (dB) 
32.516 33.052 33.989 33.693 54.990 

Average 

PRD (%) 
13.59 13.41 13.04 12.99 11.41 

Average 

MSE 
0.011 0.027 0.021 0.041 0.008 
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A close inspection of Table 6.3 shows that the proposed method performs better when compared 

to the other ECG signal denoising methods. The proposed ECG signal denoising Technique 

achieves the highest SNR of 54.990 dB and lowest PRD(%)/MSE of 11.41 % and 0.008, 

respectively. 

6.5.3 ECG Signal Detection 

Detection accuracy (DAcc), sensitivity (Se), detection error (DErr), and time consumption (TC) 

are the metrics used to evaluate the performance of the adaptive slope predication criterion-

based ECG signal detector. Performance of the proposed adaptive slope prediction-based ECG 

signal detector for different ECG databases is shown in Table 6.4. From Table 6.4, it has been 

observed that the proposed ECG signal detector achieves the highest average detection accuracy, 

average sensitivity with a lower average detection error, and time consumption. 

Table 6. 4: Detection performance of the proposed adaptive slope prediction criterion-based ECG detector 

Class of ECG Data Total 

Beats 

DAcc (%) Se (%) 
DErr 

(%) 

Average TC 

(Seconds/ record) 

Normal ECG 75016 99.93 99.95 0.001 1.15  

Ventricular 

premature contraction 

7130 99.88 99.91 0.002 1.25  

Atrial premature beat 2546 99.89 99.82 0.003 1.18  

Left bundle branch 

block 

8075 99.86 99.86 0.002 1.10  

Right bundle branch 

block 

7259 99.92 99.92 0.001 1.07  

Paced beat 7028 99.93 99.93 0.006 1.28  

Fusion of paced and 

normal beat 

982 99.90 99.92 0.004 1.05 
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Performance comparison between the existing methods and the proposed biorthogonal 3.1 

wavelet transform and an adaptive slope predication criterion-based ECG signal detection 

method is shown in Table 6.5. An inspection of Table 6.5 shows that the proposed ECG signal 

detector performs better as compared to the existing ECG signal detectors. The proposed ECG 

signal detector can differentiate between normal ECG, paced ECG, arrhythmic ECG, low-

quality ECG, and high-quality ECG with higher detection accuracy ranging from 99.86% to 

99.93%. 

Table 6. 5: Performance comparison between the existing and the proposed ECG detection method 

Performance Metrics 
References 

[28] [32] [35] [36] Proposed 

 Average DAcc (%) 99.38 99.86 99.77 99.70 99.90 

Average Se (%) 99.89 99.80 99.60 99.31 99.90 

Average DErr (%) 0.736 0.34 0.006 0.009 0.002 

Average TC (Sec./record) 1.35 1.28 1.21 1.19 1.15 

 

6.6 FPGA IMPLEMENTATION 

The proposed ECG signal detector using biorthogonal 3.1 wavelet transform and an adaptive 

slope prediction technique has four major blocks, namely, wavelet filter bank, thresholding, 

comparator, and a counter. System Verilog hardware description language and Xilinx® Vivado® 

design suit are used to implement the proposed technique and complete its functional 

verification. Area, power, and delay requirements of the proposed technique are calculated by 

implementing the detector on the Xilinx® Virtex®-7 FPGA. Top-level register-transfer level 

(RTL) view of the proposed wavelet filter bank architecture and complete ECG detection 

Technique are shown in Fig. 6.6. 

Initially, 16-bit ECG signal, clock, and reset are applied as an input to the wavelet filter bank. 

Threshold function is applied as one of the inputs to the comparator circuit is also of 16-bit. The 

output of the proposed detector on a real-time ECG data of one-minute is shown in Fig. 6.7. 

Area, power, and delay are the measures used to compute the computational complexity of the 

proposed detector. Area requirements of the proposed wavelet filter bank architecture are 
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reduced by using a demand-based wavelet filter bank architecture. Further, LWDF based digital 

filter structure realization reduces the count of multipliers and delay elements by 75% and 80%, 

respectively. 

 

(a) 

 

(b) 

Fig. 6. 6 RTL top view of proposed ECG detector. (a) wavelet filter bank, (b) complete ECG detection Technique 

 

Fig. 6. 7 Output of the proposed ECG detector 
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Instead of a floating-point algorithm, a fixed-point algorithm is utilized to reduce circuit 

complexity and power requirements of the proposed design. To maintain symmetry and fair 

comparison between the proposed ECG signal detector and existing work in the literature, a 

similar environment as used in the present work to calculate the area, power, and delay 

requirements. Fig. 6.8 shows the FPGA implementation and test platform of the proposed ECG 

signal detector. 

 

Fig. 6. 8 FPGA implementation and test platform of proposed ECG detector 

Area, power, delay of the proposed design is shown in Table 6.6. Table 6.6 brings us to the 

conclusion that the proposed ECG signal detector has a lower area, power, delay, and switching 

energy when compared to the existing work.  

Table 6. 6: Area, power, and delay comparison of the proposed ECG signal detector with existing literature 

References [66] [70] [99] [226] Proposed 

Operating frequency (kHz) 1 1 1 1 1 

VDD (V) 3 3 3 3 3 

Power consumption (µW) 0.156  16.6  0.560  1.9  0.099  

Area (mm2) 1.96 1.36 1.19 6.83 1.1 

Delay (ns) 42.61 31.03 18.73 26.84 10 

Switching energy (PDP) (µJ) 6.64 515.098 10.488 50.996 0.990 

(* for a fair comparison performance of the given references is calculated by generating the 

similar environment as described in the original paper at 3V VDD and 1 kHz operating 

frequency). 
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6.7 SUMMARY 

Using biorthogonal 3.1 wavelet transform and an adaptive slope prediction criterion, high 

detection accuracy, and lowest error has been achieved. Also, using the demand-based wavelet 

filter bank architecture and lattice wave digital filter realization the lowest power consumption, 

area, dealay, and switching energy have been achieved. Finally, validation of the proposed 

design for real-time applications is verified by implementing it on Xilinx® Virtex®-7 FPGA.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

In this report, wave detection and lossless data compression of an ECG signal are studied using 

adaptive slope prediction thresholding and biorthogonal wavelet transform compression. The 

proposed technique is validated using various ECG signal databases. The biorthogonal 3.1 

wavelet transform based filter bank realized using linear phase array structure achieves an SNR 

of 54.990 dB. Using the proposed adaptive slope prediction technique, sensitivity, specificity 

and, overall detection error, respectively, are found to be 99.94 %, 99.92 %, and 0.0013. 

Further, using the biorthogonal wavelet transform based lossless data compression technique, a 

compression ratio of 22.61 is achieved when compared to the existing real-time ECG data 

compression method. Thus, it can be concluded that the combination of ECG signal detection 

and lossless ECG data compression not only reduces the false wave detection but also increases 

the ECG data compression ratio thus facilitating a speedy transmission and efficient bandwidth 

utilization. The proposed ECG detector is implemented on Xilinx® Virtex®-7 FPGA. Power 

consumption, area, delay, and switching energy, respectively, of 99 nW, 1.1 mm2, 10 ns, and 

0.990 µJ has been achieved using the proposed technique.  

Protecting personal data (information) on the internet seems like becoming a thing of past. Soon, 

individuals will be struggling to maintain their personal medical information on the internet. 

The trend shows [227] ECG as one of the most vulnerable data set widely put to use. This 

increasing use of data on the internet is also exerting necessitating pressure on the worldwide 

web. To safeguard and protect the data use of watermarks to ECG data is the focus of the future 

research study. An ECG is the most straightforward test amongst the plethora of heart activity 

monitoring, which lists the health of the heart. ECG signal helps diagnostic and preventive 

measures. Such data is generated in large quantities on day to day basis. Hence, data storage 

with privacy and accuracy is one big challenge for today’s information technology (IT) 

professionals engaged in the development of medical software applications. Many types of 

research are being done in the field of making the ECG data more secure. Watermarking 

combined with new compression methods is gaining importance, and several ways are seen for 
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using such techniques to safeguard ECG data. This proposed methodology can be further 

extended to analyze various biomedical signals. 
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