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Abstract

In many real-world classification applications, such as medical diagnosis, fraud detection, bio-

informatics, or fault diagnostics, it is common that one class has only a limited number of

training instances (called the minority class), while the other class (called the majority class)

conceive the rest. Such types of data sets are called unbalanced. In data classification, machine

learning (ML) methods can face a performance bias when the nature of data sets is unbalanced.

In this case, the trained classifiers may have good accuracy on the majority class but lower

accuracy on the minority class. Genetic Programming (GP) is an optimistic machine learning

method based on the Darwinian theory of evolution to automatically emerge computer programs

to solve problems without any domain-specific knowledge. Although GP has revealed much

success in developing reliable and precise classifiers for typical classification jobs, GP, like

many other ML algorithms, can produce biased classifiers when the nature of data is unbalanced.

This biasing is because traditional training standards such as the overall success rate in the

fitness function in GP can be influenced by the more significant number of instances from the

majority class.

This research focuses on algorithmic methods assuming that the whole training data is

important and valuable, and no data sample should be removed from the training process. The

second consideration in this work is that the proposed methods should be problem-independent,

and they should not expect any a-priori domain-specific or expert knowledge. Thus, this re-

search focuses on developing GP-based approaches for unbalanced data-set classification, based

on internal cost alteration in the GP fitness function and facilitating the unbalanced data set to

be used “as is” in the training process. This research work demonstrates that by designing

various methods in GP, we can evolve classifiers with good classification performance on the

majority and the minority classes. These developed methods are evaluated, on publicly avail-

able, UCI-based binary benchmark classification problems with varying levels of imbalanced

factors.
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Despite many methods in literature which focus on balancing training sample counts of the

minority and majority class by over-sampling of the minority class samples or under-sampling

of the majority class samples, this research work evaluates the impact of custom learning weight

assignment to the minority class samples while training. This research work uses the distance

between the predicted and the actual outcomes of the classifier, and then combines the cus-

tom weight factor and the distance factor for designing new fitness functions in GP to handle

unbalanced data classification. The proposed method performance is compared with standard

GP and other classification techniques, namely support vector machine (SVM) and K-nearest

neighbourhood (KNN) algorithms. This research work also focuses on developing an Evo-

lutionary multi-objective optimization (EMO) approach by considering minority and majority

class accuracies as distinct conflicting objectives. The developed method is evaluated on the

quality of generated Pareto-front with reference to the standard MOGP approach.
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CHAPTER 1

INTRODUCTION
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Data classification is the process of sorting and categorizing data into various distinct

classes or distinct groups such that we can assign labels to each class. There is a high demand

for methods that can automatically search and identify useful and valid patterns in data given

for classification, with as little human interference as possible in real-world applications. Aim

of the classification is to map an input vector X = [x1, ...,xn] to one of the K classes Ck, where

k=1,2...K. A classifier, also called the model, is trained to perform this mapping of X to K [93].

The high availability of digital information in the real world creates demand for designing

mathematical models, which automatically investigate this data and determine applicable and

valid patterns in data for classification. The desirable characteristics of such models are that the

model should be fast enough, requiring limited human intervention while applying those models

in real-time. Another desirable characteristic is that very minimal or no domain expertise should

be required while applying these models [27, 89, 118]. However, designing intelligent learning

systems for real-world applications that perform classification reliably and with enough accu-

racy is difficult [132]. Genetic Programming (GP) is an evolutionary machine learning (ML)

search and optimization technique successfully applied for creating reliable classifiers to resolve

classification problems. In GP, various solutions to a given problem, represented as programs,

are combined with other programs to produce the new and hopefully improved programs over

a generation by generation until a reasonable and acceptable solution is evolved.

In many real-world classification applications, such as bio-informatics [3, 20], fraud de-

tection [35, 116], medical diagnosis [39, 66, 115, 147], or fault diagnostics [44, 76, 112], it

is common to have an unequal number of training examples in one class against to the other

class(es). This characteristic is said as unbalanced-class or Unbalanced class. A data set is

called unbalanced or Unbalanced if at least one class has limited examples, and the class with

a smaller number of samples is called the minority class. Similarly, a class having a more

significant number of data samples is called the majority class [132, 68]. Multiple state-of-the-

artwork has been done in the literature to handle unbalanced data classifications, and proposing

new methods is always an interest of researchers.
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1.1 MOTIVATION

In the real world, most data sets are unbalanced [115]. The quality and ability of the classifier

is highly impacted by the nature of data used to train the classifier [54]. Therefore in the case of

unbalanced nature, the ability of the classifier may also be unbalanced. Most of the classifiers

show biased or lower accuracy on unbalanced data [46]. Recent research works in the literature

show that this Unbalanced nature of data misleads classification performance [16]. As there

are fewer examples in the minority class for training and testing, the weight of these data on

model accuracy will also be limited. Thus, for the Unbalanced data set, higher accuracy is not

necessarily an indicator of its goodness. In fact, in most cases, the correct classification of the

minority class is more needed than the majority class. For example, the fraud transaction case

(minority class here) is even less than 1% in fraud transaction data. However, this minority class

is of more interest to any user here. In this case, a classifier may have 98% accuracy, but it still

fails to detect any fraud transactions. This point needs to be considered when we compare the

accuracies of classifiers.

In the case of the real-world application, the primary interest of the class is the minority

class. Therefore in such classification problems, classifying samples belonging to the minority

class is similar or, in some scenarios, more crucial than correctly classifying samples from the

majority class. Therefore resolving this learning bias to accurately performing classification

of samples belonging to both classes, i.e., the minority and the majority classes in an equal

and similar manner, has become a vital domain of research. For handling the unbalanced data

classification issues, multiple approaches have been proposed by various researchers. These

approaches may be categorized into three groups: data level, the ensemble of classifiers, and

the algorithm level. The data level approach focus on balancing a trade-off between the mi-

nority and the majority class samples count either by under-sampling of the majority class data

points or over-sampling of the minority class data points. Ensemble-based techniques focus

on adopting the technology of multiple classifiers to improve the performance of a single clas-

sifier and predict. Here, voting of classifier’s results or averaging all classifier results is done

to give the final decision. Although data-level approaches can handle the issue of unbalanced

data classification, there are a few significant downsides of these methods. These techniques

take a lot of time and suffer from the loss of critical information contained samples during the

3



under-sampling of unbalanced data [142]. Similarly, the under-sampling of the instances, be-

longs to the majority class may remove some essential training data, and the model becomes

under-fitted. Thus under sampling-based techniques may create a loss of valuable information

[74]. On another side, an eminent problem with these ensemble approaches is that they are

computationally intensive [144]. Also, both methods require domain expertise in the respective

area of dataset [15].

Due to these limitations, ML researchers have focused on the algorithm level approach

(also called internal approaches) using cost adjustment in the learning method. Here focus is

on either modifying existing algorithms or proposing new algorithms to overcome the issue of

unbalanced data classification [141, 15].

One approach to resolve this learning issue is to assign a custom high weight to the classes

during training. This custom weight assignment may nullify the impact of higher counts of any

classes during the learning phase of the classifier. Numerous works in literature, based on the

criteria of assigning custom weight to the majority and minority classes, are done to improve the

classification performance [9, 82, 88, 126]. Although the proper adjustment of weights during

the training phase improves the model classification performance, assigning these weights can

require a priori domain knowledge [15].

Also, several techniques are proposed in the literature based on the distance between the

predicted and the actual outcomes [15, 21, 34]. GP, inspired by the Darwinian theory of evo-

lution, is emerged as a prominent field to solve different research problems [72]. In GP, many

researchers focused attention on adapting the new fitness function to reward solutions that are

accurate on both the majority and the minority classes [15, 100]. These techniques give atten-

tion to developing new performance criteria in the fitness function, which can develop solutions

with good classification ability in both classes without incurring an ample increase in training

times and should be problem-independent.

Evolutionary multi-objective optimization (EMO) is also gaining popularity in research

which facilitates solutions to learning with multiple conflicting objectives [37]. EMO achieves

this by treating the goals independently in the learning procedure using the notion of the Pareto

Dominance concept in fitness [16, 29, 63]. The main advantage of the Multi-Objective GP

(MOGP) approach is that it can produce a set of good-performing classifiers in a single exper-

imental execution. Against the MOGP approach, the canonical GP approach requires multiple

4



experimental runs and a priori objective-based fitness function. Another advantage of MOGP

is that it explicitly includes the learning bias into the algorithms. These works are another

motivation for this research work.

Thus allowing the unbalanced data to be used “as is” and adapting the diversity measures

in the form of GP fitness function is the primary motivation behind this research work.

1.2 RESEARCH OBJECTIVES

To address the above said problem statement, this research is organized with the following five

objectives.

1. To investigate and improve unbalanced data classification methods based on GP.

2. Develop new internal cost-adjustment techniques in GP (also called fitness functions)

through balancing the weighted accuracies between the majority and minority class.

3. Develop new fitness functions in GP through optimizing the distance between predicted

and actual outcomes.

4. Develop new fitness functions for GP to improve classification performances based on

multi-objective evolutionary optimization approaches.

5. Comparative analysis of proposed methods with other state-of-the-art methods available

in the literature.

By concentrating on internal cost alteration in the GP fitness function, this research work

facilitates the utilization of the unbalanced data set to be used “as is” in the training process.

Also, it would not require any data sampling based on external data-balancing methods by arti-

ficial means to adjust sample counts in the input data before applying the learning mechanism.

This research work focuses on algorithmic methods with below important criteria:

1. Whole training data is important and valuable. Therefore no data sample should not be

removed from the training process.
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2. The proposed methods should be problem-independent, and they should not expect any

a-priori domain-specific or expert knowledge.

1.3 THESIS OUTLINE

The remaining part of the thesis is organized as follows. Chapter 2 contains a brief background

and literature review related to unbalanced data classification. The contribution work chap-

ters, Chapters 3–5, address research objectives in this thesis; and Chapter 6 summarizes and

concludes the thesis.

Chapter 2 has two distinct sections: background materials and related work. The back-

ground part includes the three substances: machine learning (ML), evolutionary computing, and

genetic programming (GP). The second part gives a detailed literature review of work related

to unbalanced data classification. This chapter also discusses the limitations of the present ap-

proaches in the literature and the challenges this research work attempts to handle. Chapter 3

proposes the use of the custom learning weight assignment to the minority class samples while

training the GP-based classifiers. Chapter 4 develops a new fitness function based on the dis-

tance among the predicted and the actual outcomes of the classifier, and the weight adjustment

of the minority class highlighted in Chapter 3. Chapter 5 proposes a MOGP method based on

the accuracies of the majority and the minority classes as the two competing objectives, with

emphasis on a better Pareto-front. Chapter 6 concludes the thesis by summarizing the work and

research objectives achieved in the individual chapters.

1.4 BENCHMARK PROBLEMS

For evaluation and performance measurement, five unbalanced problems, with various levels

of the Unbalanced factor, are taken. These Unbalanced classification problems are based on

the publicly available UCI data set repository [42]. This Unbalanced factor varies from 6:94 to

37:63. Table-1.1 shows a summary of these data-sets. These Unbalanced classification prob-

lems are briefly described as follows:
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Table 1.1: Summary of Unbalanced Benchmark Problems Used

Data-Set Unbalanced Features Minority Majority Total Data-Set

Name Ratio Count Count Count Count Description

ABL-9-18 06 : 94 8 42 689 731 Abalone (class 9 vs 18)

YEAST-2 11 : 89 8 163 1321 1484 Yeast (ME3 vs all)

YEAST-1 16 : 84 8 244 1240 1484 Yeast (MIT vs all)

CKD 27 : 73 24 53 115 168 Chronic kidney disease

WDBC 37 : 63 31 212 357 569 Wisconsin diagnostic breast cancer

Abalone (ABL-9-18)

The abalone dataset is a popular Unbalanced real-world problem used in various research works

[50, 67]. In this benchmark problem, a classifier is evolved to predict the age of abalone shell-

fish. The abalone data-set has eight attributes and a multi-class classification problem. We have

converted this to a binary class classification problem by selecting class 9 vs class 9 plus class

18. Thus out of 731 total samples, 42 samples (6%) belong to the minority class. Fig. 1.1 shows

a summary of this data-set.

Figure 1.1: Abalone data set

YEAST-1

The yeast data set has 1484 samples. The objective is to predict the protein localization sites

in yeast cells. Based on the properties of amino acid sequences, there are eight input features.

There are nine classes in this data set, which makes it a multi-class classification problem. We
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converted this multi-class problem to a binary class classification problem by considering only

one class (the minority class) and the rest as the majority class samples. Two sets of data set,

YEAST-1 and YEAST-2, are generated. In YEAST-1, data set is generated by considering

MIT (Mitochondrial) versus all classes samples. Thus YEAST-1 data set has 16% of minority

samples count. Fig. 1.2 shows a summary of this dataset.

Figure 1.2: YEAST-1 data set

YEAST-2

The YEAST-2 classification problem is also generated using Yeast data set by considering ME3

(Membrane protein, no N-terminal signal) versus all classes samples. Thus YEAST-2 data set

has 11% of minority samples count. Fig. 1.3 shows a summary of this dataset.

Figure 1.3: YEAST-2 data set
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Chronic kidney disease (CKD)

The chronic kidney disease (CKD) data set has 24 attributes. This clinical data were collected

by a doctor (nephrologist) Soundarapandian et al. at Apollo Hospital, Karai-kudi, Tamilnadu

(India), in 2015. The information is collected in two months duration. Out of 158 samples, 73%

of the data belongs to the Non-CKD class, and 27% belongs to the CKD class. Fig. 1.4 shows

a summary of this data-set.

Figure 1.4: CKD data set

Wisconsin diagnostic breast cancer (WDBC)

WDBC data set has a sample of 569 patients. It has 31 input features. The patient may belong

to be either the Benign or Malignant breast tumour group. Out of this 569 sample, 212 patients

(37%) belong to the minority class. Fig. 1.5 shows a summary of this dataset.

1.5 PERFORMANCE EVALUATION METRICS

For binary classification, there are four different outcomes possible. These outcomes are de-

scribed in Table. 1.2. Based on these outcomes, We calculated classification accuracy, recall,

specificity, G-mean and the area under the curve (AUC) on benchmark data sets to evaluate and

compare our proposed technique. A detailed description of these metrics is given in [32]. These
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Figure 1.5: WDBC data set

0

metrics are summarized as follows:

Table 1.2: Binary Classification Outcomes

Predicted

A
ct

ua
l Possitive class Negative class

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

Accuracy

The Accuracy of a classifier represents how often this classifier provides the correct result.

Accuracy =
T P+T N

T P+T N +FP+FN
(1.1)

Specificity

Specificity measures how often a classifier predicts non-object (no). In the unbalanced data clas-

sification scenario, the negative class sample count is high, so this negative class is also called

the majority class. Due to the higher counts, the learning ability of standard algorithms inclines

toward the majority class. Therefore, standard techniques give a higher value of specificity.
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Speci f icity =
T N

T N +FP
(1.2)

Recall

The Recall is also called Sensitivity or true positive rate, which measures how often a classifier

correctly predicts an object if it’s an object.

Recall =
T P

T P+FN
(1.3)

G-mean

G-mean is defined as the square root of the product of recall (minority class accuracy) and

specificity (majority class accuracy).

G−mean =
√

Recall ∗Speci f icity (1.4)

AUC

AUC is a probability curve generated by the plot of the false-positive rate (FPR) on the x-axis

and true positive rate (TPR) on the y-axis. It denotes how much the trained model is capable of

distinguishing between classes.
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AUC =
Sp−np(nn +1)/2

np +nn
(1.5)

where Sp is the sum of all positive samples ranked, while nn and np are the numbers of

negative and positive samples, respectively.

These metrics may be summarized by equations: 1.1, 1.3, 1.2, 1.4, and 1.5.
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CHAPTER 2

REVIEW OF LITERATURE
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This chapter gives a brief background and related literature work for the thesis. The ini-

tial three sections of the chapter talk about the background material, which includes the three

substances: machine learning (ML), evolutionary computing, and genetic programming (GP).

The last section discusses the literature review of unbalanced data classification. This chapter

also discusses the challenges with unbalanced data classification, various approaches to handle

it, the limitations of the existing methods available in the literature. The different techniques to

address the unbalanced data classification are categorized into three groups: Data level, Algo-

rithm level, and Ensemble of classifiers.

2.1 MACHINE LEARNING

Machine learning (ML) is a fast-growing area of research. ML refers to the technique where

computer programs learn to solve various problems without being explicitly programmed. In

ML, programs (also called the agent) automatically learn with their experiences in a given envi-

ronment. These ML techniques may be broadly categorized into supervised learning, unsuper-

vised learning, and reinforcement learning. In supervised learning, training data is available as

input-output pairs. Thus, in supervised learning, an agent learns how to map input data to output

labels [33]. A well-trained agent correctly predicts the class labels for unseen cases. The focus

here is that from the training data, the learning method should be able to generalize enough,

to predict unseen samples correctly. Unsupervised learning refers to algorithms that discover

unique patterns in data sets without explicitly providing any detail [58]. Thus, unsupervised

learning techniques allow an agent to explore the underlying structure, detect similarities or

patterns as clustering in a given data set on its own. In reinforcement learning, the agent gets

feedback based on its outputs actions in terms of punishments or rewards [119]. Against super-

vised learning, the desired outputs are not explicitly provided. The agent learns only based on

interactions with the environment and its observation in the form of reward and punishment.

14



2.1.1 Classification

Data classification is a process to categorize data into predefined groups. It is a supervised ma-

chine learning technique in which we first trained our model for a given number of predefined

classes and then tried to classify data, which are unseen to our developed model. Cancer detec-

tion, skin disease prediction, fraud transaction detection, land-type classification, etc., are some

leading examples.

Based on the nature of predicted output variables, the classification techniques can be

divided into two groups:

1. Binary classification: In the binary classification, there are only two output classes. So,

the data point may be whether this belongs to some group (true) or not (false). The

simplicity of this case is that we have to focus on how to identify boundaries or thresholds.

2. Multi-class classification: In the multi class classification, the number of output classes

(N) is greater than two. Designing classifiers for multi-class classification is more compli-

cated and trickier. The majority of Unbalanced data classification works in the literature

have been done for binary classification, and multi-class classification is still a challeng-

ing task [78].

This research work focuses on supervised learning. In this arena, there are many popular

ML techniques available. These techniques include but are not limited to K nearest neighbour-

hood (KNN) and Support Vector Machine (SVM) (used in the experimental results to compare

the proposed methods), briefly described as follows:

2.1.2 K Nearest Neighborhood (KNN)

The K-nearest neighbours (KNN) is a non-parametric, supervised ML technique. KNN doesn’t

require domain knowledge [30, 88]. In a multidimensional feature space, training samples

are assumed to be a vector. All training samples are labelled with some class labels. The

underline principle behind the KNN method is that data samples with similar characteristics
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Figure 2.1: KNN Illustration for 2 Features and K=5

live near each other. Therefore while predicting, KNN considers K nearest samples, where K

is a user-defined constant. At the time of classification, KNN calculates the distance of the

testing sample vector from the labelled vector. It takes K nearest point from a testing sample,

calculates the distance from these samples, and assigns a class label based on the most labelled

points. The distance between two samples is called the degree of dissimilarity. Multiple-way of

calculating similarity or distance exists for measuring the similarity/distance. One such metric

is the Euclidean distance, defined as Equ. 2.1

DEuclidean =

√
N

∑
i=1

(xi− yi)2 (2.1)

where X, and Y, are two data samples, with N features. xi, and yi are ith feature of X, and

Y respectively.

A demonstration is shown in fig. 2.1 [65]. This figure explains how KNN with K=5 works

for a classification problem with two features. For classifying the red circle, it looks at the five

instances, which are closest to it. Since there are four blue circles nearest to the red circle, and

blue circles belong to class 1, this red circle will be assigned to class 1. The main steps of the

KNN are as follows:

1. Set the value of K.
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2. Calculate the distance from the new data-sample (holdout from all of the data-sample in

the dataset).

3. Discover the K samples in the provided training sample data that are ’closest or nearest’

to the measurements of the unknown sample data point.

4. Predict the label or class of the considered data point using the most appropriate class or

label from the KNN.

Selecting a value of K depends on the data. A higher value of K reduces the effect of noise

data on classification. Against this, a lower value of K makes the boundary between classes

less thin. Thus, a small value of K generates a highly complex ML model, resulting in the over-

fitting of the model. The high value of K makes the model highly generalized, i.e. under-fitted.

In this work, we did the grid test [10] by performing multiple experiments with a different value

of K and chose the best value of K, based on the performance shown.

2.1.3 Support Vector Machine (SVM)

In recent years, SVM emerged as a useful classification method [6, 53, 84, 108]. It is a non-

parametric, supervised learning technique. SVM, proposed by Vapnik, maps the input sample

data points to different categories or classes by creating a hyper-plane and maximizing the

margin between these classes and hyperplane [22]. SVM technique is based on mapping given

input data to a high-dimensional feature space so that the sample data points can be grouped

into different classes, even when the provided data are not linearly separable. The mapping

from an input space to a high-dimensional feature space is performed by a free defined set of

mathematical functions. These functions are called kernels. The mapping concept is based

on Cover’s theorem [31], which states that there is a high probability that a given non-linearly

separable data set may be transformed to linearly-separable data set by projecting it into a

higher-dimensional space via some non-linear transformation. Once a separator is generated

for the data, the data should be transformed so that a separator can be generated as a hyper-

plane. This plane can be employed to classify new or unknown cases. Therefore, the SVM

algorithm creates an optimal hyper-plane that categorizes new examples. A demonstration is

shown in fig. 2.2 [65], where in a 2-d space, a hyper-plane is transformed into a line.
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Figure 2.2: SVM Illustration of a 2-d Hyper-plane, Margin, Support-vectors

The main benefits of SVM are that they are perfect in high dimensional spaces and use a

sub-set of training sample points in the decision functions. These decision functions are called

support vectors. Another advantage of SVM is that it is memory efficient. The disadvantage of

the SVM is that if the features count is higher than the training-samples count, it leads to over-

fitting. Another drawback of SVM is that it does not directly give probability estimates required

in most classification tasks. Also, if the dataset is huge, SVMs are not very computationally

efficient.

2.2 EVOLUTIONARY COMPUTING

The idea of adapting Darwin’s principle of ‘survival of fittest’ for machine-driven problem-

solving arose around the 1940s [48]. In 1948, Turing proposed a new computational model,

called ‘unorganized machines’, which becomes the base of evolutionary computation [127]. In

1962. Bremermann presented formal computer experiments on ’optimization through evolution

and recombination’ [19]. During the 1960s, three variances were developed. First, Fogel et

el. proposed Evolutionary programming (EP) with no fixed structure [47]. Second, Holland

introduces the Genetic algorithm (GA) [59]. Third Rechenberg and Schwefel introduced Evo-

lutionary strategies (ES) [12]. All these approaches were nurtured separately, but after the early

1990s, they have been collectively seen as evolutionary computing (EC) [45]. In 1992, a fourth
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stream was emerged, known as genetic programming (GP), by Koza [71].

Table 2.1: Evolutionary Computing vs. Problem Solving

Problem Solving Natural Evolution

Problem Environment

Candidate Solution Individual

Quality Fitness

The central idea of evolutionary computation is to relate effective natural evolution to a

specific form of problem-solving. This may be term as ’trial-and-error’ [45]. For simplicity,

consider natural evolution as follows. In nature, the environment is created with a population

or pool of individuals. These individual beings attempt for their survival, and if successful in

surviving, then perform reproduction. The survival fitness of these individuals is driven by the

natural environment and refers to how well they succeed in attaining their goals. Thus fitness

represents their survival and reproduction chance. Similar to this analogy, there is a collection of

solutions in the stochastic trial-and-error (generate-and-test) style process of problem-solving.

How well these individuals solve the problem ( i.e. their quality) decides the probability of

their existence and future use as seeds for constructing new candidate solutions. This similarity

among the two scenarios may be summarized in Table. 2.1.

2.3 GENETIC PROGRAMMING

Genetic programming (GP) is a nature-inspired algorithm introduced by Koza [71]. The algo-

rithm is based on Darwin’s “principle of survival of the fittest” in nature. The building block

of GP is individuals, called programs. These programs denote different mathematical formulas

to solve the problem at hand. These programs are represented as a tree in memory (Figure-2.4).

A set of individuals is processed for a predefined number of generations or till the satisfaction

criteria are not met. This processing is done using three operators: reproduction, crossover,

and mutation. These three operators are inspired by nature, where a good individual can create

a copy of itself and select to go in next-generation (reproduction), two individuals can gener-

ate a new child individual, which contains some gene from first and some gene from the second
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(crossover) and in some cases, one or more genes get mutated in the child (mutation). The func-

tioning of these operators depends on an evaluation equation called fitness function. Based on

the problem context, the objective will be to either minimize or maximize the fitness function.

The value of the fitness function converges over generation by generation. Thus, in summary,

the main steps of GP are population initialization and process this population over generation

to generation by applying nature-inspired operations: reproduction, crossover, and mutation.

When applying these crossover and mutation operators, it is always ensured that the generated

child program satisfies the closure property, i.e., it is a valid solution.

The GP framework is summarized in Fig. 2.3.

Figure 2.3: GP Framework

2.3.1 Initialization of population

In GP, we initialize a set of individuals. This set is called population, and individuals are called

programs. Each program is represented as a tree. A program’s in-memory representation is

shown in Figure-2.4 [98]. The nodes will be either an internal node or a leaf node. All internal

nodes are an element of a predefined set of functions F, and all leaf nodes are an element of

either part of the feature vector (X) or a constant (T).
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A range of tree depth, called initial depth, for the initial population is defined. Initial tree

heights for a program is randomly chosen in this range. There are the following three methods

to generate the initial population:

1. Grow: Here, nodes are randomly chosen from function set (F) or terminal set (T). This

method will create trees of more varied sizes and shapes.

2. Full: Here, nodes are chosen from function set (F) till random initial depth is reached,

and after that, the nodes are chosen from the terminal set (T).

3. Ramped half and half: This initialization method is also called the ‘half and half’ method.

In this tree are grown 50-50 mix of the grow and full method.

Figure 2.4: Program’s Tree Representation

2.3.2 Standard GP Fitness Function for Classification

Overall classification accuracy has been used as a standard fitness function in GP. This is defined

as the ratio of correctly classified samples versus total samples.

Facc =
T N +T P

T N +T P+FN +FP
(2.2)

where, TN denotes true negative, TP denotes true positive, FN denotes false negative and

FP denotes false positive prediction counts.
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The objective is to increase this classification accuracy close or equal to 1. This objective

is achieved generation by generation in the GP framework, i.e. fitness of programs converge to

1.

2.3.2.1 Drawback with standard the fitness function

This can be easily observed that during fitness calculations, equation-2.2, gives equal impor-

tance to all examples, irrespective of whether it belongs to the minority class or it belongs to the

majority class. As majority class examples have a higher count than minority class, this fitness

function will favour the majority class. This favouritism leads to making our classifier biased

toward the majority class. Thus during testing, this classifier will show better accuracy over the

majority class and lower accuracies over the minority class. Also, as the majority class example

count is higher, classifier accuracy will be still high.

Let’s assume that there are 92% majority samples and 8% minority samples. If a classifier

gives classification decisions favouring the majority class in all cases, its accuracy becomes

92%, but it fails to classify any minority class samples correctly. Also, another classifier having

classification accuracy 90%, but for both classes, i.e., minority, as well as the majority, will be

better than the first one.

In the case of binary classification, generally, model output is defined as the following:

f (x) =

1, if x≥ 0.5

0, otherwise
(2.3)

For binary classification, the value 0.5 is treated as a boundary. Any value less than 0.5

is treated as a minority class, and any value greater than 0.5 is treated as a majority class. If

two classifiers give output values, 0.99 and 0.51, respectively, both will be treated as 1. The

point to be noted here is that, in the first case, the distance of the predicted value is 0.01, but in

the second case, this distance is 0.49. Therefore, in reality, the first classifier is better in terms

of classification accuracy. Thus, the issue with the above fitness function is that it may show

100% classification accuracy for even an under-fitted model. In another word, equation-2.2
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don’t respect this information. This is the second issue with standard fitness function.

Thus, the standard fitness function has two significant drawbacks. These drawbacks may

lead the GP framework to generate biased and under-fitted classifiers. Therefore GP with stan-

dard fitness function is unsuitable for the classification problems with the unbalanced nature.

2.3.3 Reproduction

Once the population is initialized and the program’s fitness values are calculated, a fixed per-

centage (e.g., 5%) of top fitness individuals are selected and will go to the next generation. This

operation is inspired by nature’s principle of survival of fittest.

2.3.4 Crossover

In the crossover, two programs are selected, and children are generated by taking some part

of each parent. The most popular crossover mechanism in GP is a sub-tree crossover. This is

illustrated in Figure-2.5 [98].

Figure 2.5: Crossover Between Two Parents
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2.3.5 Mutation

In the mutation, some portion of the program is randomly changed. The most popular mutation

is a sub-tree mutation, in which a mutation point is randomly selected, and a randomly generated

sub-tree is inserted at that point. This is illustrated in Figure-2.6 [98].

Figure 2.6: Mutation of a Program

2.3.6 Termination Criteria

The algorithm is terminated if either population is processed for a predefined maximum gener-

ation or training accuracy reaches to 100%.

The GP algorithm may be summarized as Algorithm-1. Since Population size (N) is con-

stant for each generation, the sum of reproduction, crossover and mutation probabilities should

be 1.00. We did extensive experiments with different values, and good results were produced

when the crossover, mutation, and reproduction probabilities were set to 0.70, 0.20, and 0.10,

respectively.

2.3.7 Classification using GP

Individuals, also called programs are the building block of GP. These programs are represented

as a tree in memory. The leaf nodes of the tree are feature variables or random numerical

constants. The internal nodes of tree are mathematical function or operators like +, -, *, /, log.
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Algorithm 1 Genetic Programming Algorithm
1: procedure GENPROG(X ,T) ▷ X is input variables and T is constant

2: N← populationSize

3: genTotal← 100 ▷ Total Generation

4: pReproduction← 0.10 ▷ reproduction probability

5: pCrossover← 0.70 ▷ crossover probability

6: pMutation← 0.20 ▷ mutation probability

7: bestFtnessGeneration← 0

8: Pcurrent ← generate N random programs

9: Calculate f itness of all programs using defined fitness function.

10: generation← 0

11: while generation ̸=genTotal do

12: Pnew← φ

13: Copy top pReproduction∗N best fitness programs to Pnew

14: Generate pCrossover∗N programs by applying crossover and add to Pnew.

15: Generate pMutation∗N programs by applying mutation and add to Pnew

16: Pcurrent ← Pnew

17: Calculate fitness of all programs in Pcurrent .

18: // check stopping criteria, if satisfied exit from while loop

19: return program with best fitness
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Thus, these programs denote different mathematical formulas to solve the problem at hand.

As a mathematical formula, it produces a single floating-point number which is the calculated

output of the GP tree for any input data sample. This tree’s output is then mapped to a set of

class labels. In binary classification, as there are only two class labels, a threshold value is used

as class boundaries to bifurcate the class labels [92, 128, 131, 143]. For example, consider a

program represented as Fig. 2.4, with two input features x and y. If we take the threshold value

0.5, any output value greater or equal to 0.5 will be treated as the positive class label. Any

output value less than 0.5 will be treated as the negative class label.

2.4 UNBALANCED DATA CLASSIFICATION

In various real-world classification applications, such as medical diagnosis [39, 66, 115, 147],

fault diagnostics [112], fraud detection [35, 116], or bio-informatics [3, 20], it is common to

have an unequal number of training examples in one class against to the other class(es). This

characteristic is said as unbalanced-class or Unbalanced class. A data set is called unbalanced

or Unbalanced if at least one class has limited examples, and the class with a smaller number

of samples is called the minority class. Similarly, a class having a more significant number of

data samples is called the majority class [132, 68].

These unbalanced data sets have their inherent complexity, and in this case, the model’s

accuracy is not straightforward. The quality and ability of classifiers are highly impacted by

the nature of data used to train [54]. Therefore in the case of unbalanced data classification,

the ability of classifiers may also be unbalanced. Most of the classifiers show biased or lower

accuracy on unbalanced data [46]. Recent research works done by different researchers show

that this Unbalanced nature of data misleads classification accuracy [16]. As there are fewer

examples in the minority class for training and testing, the weight of these data on model accu-

racy will also be limited. Thus, in the Unbalanced data set, higher accuracy is not necessarily

an indicator of its goodness. In fact, in most cases, the correct classification of the minority

class is more needed than the majority class. For example, in fraud transaction data, the fraud

transaction case (minority class here) is even less than 1%. Nevertheless, here this minority

class is of more interest to any user. In this case, a classifier may have 98% accuracy, but it still
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fails to detect any fraud transactions. This point needs to be considered when we compare the

performances of classifiers.

2.4.1 Challenges of unbalanced data

The minority class samples represent rare events. Examples of these rare events are fraud

detection, natural clematis, software defects, etc. Although these events rarely happen in day-to-

day life, it has a high impact on the outcome. Classification of these datasets has its challenges,

and some of the significant difficulties may be summarized as follows:

1. Performance evaluation metrics like overall classification accuracy, mean square classifi-

cation error, etc., are biased and inclined toward the majority class [81].

2. Standard classification techniques like logistic regression, decision tree, Naive Bayes

classifiers, support vector machine (SVM), etc., are more suitable for balanced data sets.

In the case of unbalanced data sets, they give sub-optimal solutions. These sub-optimal

solutions are inclined towards better majority class classification [80].

3. In some cases, minority class samples are treated as noise by classifiers [11].

4. It is possible that some of the noise may be treated as a minority class sample by the

classifier [11].

5. Sometimes, minority class samples boundary overlapped with majority class sample bound-

aries, which make it hard to learn or false learning by the model during training [81].

6. As the minority class sample counts are very low, the learning impact of these samples is

significantly less during the training of the model [15].

7. In the case of a high dimensional dataset, learning from minority class samples becomes

the most tedious task during training [18].
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2.4.2 Handling Unbalanced Data Classification

For handling unbalanced data classification problems, multiple approaches are presented in the

literature. These approaches can be categorized into the below groups:

1. Data level approaches

2. Algorithm level approaches

3. Ensemble of classifiers

2.4.3 Data level approaches

Data level approaches concentrate on modifying the original data set to improve the classifica-

tion accuracy of models. Data sampling is a common approach coming into this category. Data

sampling is also called an external approach. Pre-sampling techniques try to create a trade-off

between minority class samples and majority class samples by oversampling the minority class

samples or under-sampling of majority class samples. In random oversampling (ROS), minor-

ity class samples are randomly chosen, and duplicate copies of these samples are generated.

Against this, in random undersampling (RUS), some majority class samples are removed. For

ROS of the minority class, a popular method is the synthetic minority over-sampling technique

(SMOTE) [25]. In this technique, to generate new minority class examples, SMOTE utilizes the

concept of K nearest neighbourhood ML algorithm. This is possible that SMOTE may generate

some wrong and noisy minority samples, which highly impact the performance of a classifier.

Also, oversampling may lead to the overfitting of models, whether under-sampling may lead

to the removal of some vital training data and the model becomes under fitted. Thus under

sampling-based techniques may create a loss of important information [74].

For training multi-layer perceptron (MLP), [78], introduced a dynamic sampling (DyS),

based technique. In this work authors focused on two main aspects during training. The first

aspect gives more importance to minority class examples during training, and the second aspect

gives more importance to examples more difficult to classify. Figure-2.7[78], shows a scenario

where classifying class 2 samples are more difficult than class 3. During MLP training, for each
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Figure 2.7: Example of a Three-class Classification Problem

epoch, the training selection probability for each training example is estimated. This probability

will play a deciding factor that for updating MLP, a considered example will be used or not. At

the place of classification accuracy, the Multi-class area under the curve (MAUC) and G-mean

is used to compare the performance. For comparing performance, 20 UCI data sets [43] are

taken, and the proposed technique is applied. The result set shown in the paper concludes that

DyS performed better than ROS, RUS, and no sampling (NoS) techniques on most of the data.

Another approach to handling unbalanced classification is to introduce synthetic samples

for the minority class. However, in some scenario, the wrong sample may be generated, which

make learning more difficult. Barua et el.[9] proposed Majority Weighted Minority Oversam-

pling Technique (MWMOTE) for efficient handling of unbalanced data classification problems.

The method first extracts samples that are hard to learn. These are the borderline samples as

shown in Figure-2.8[9]. A weight is assigned to samples based on their importance. These

weights are worked as selection probability. In last, synthetic samples are generated based on

a customized clustering technique. The proposed technique is evaluated for 20 real world UCI

data set, and results are compared with SMOTE and other techniques.

In the literature, the class imbalance ratio (IR) is used to measure the degree of class

imbalance. IR is a suitable metric in binary classification, but in multi-class classification, it is
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Figure 2.8: Illustration of Boundary Samples

not a good measure [122]. We can define entropy as an average amount of information present in

a data set for multi-class classification. Li et el.[74] proposed entropy-based imbalance degree

(EID) as a metric in their work and introduced three IR based techniques:

1. Entropy-based over-sampling (EOS) technique: over-sample other classes until their count

reaches to largest majority class.

2. Entropy-based under-sampling (EUS) technique: under-sample other classes until their

count reaches to the lowest minority class.

3. Entropy-based hybrid sampling (EHS) technique: merge the above two techniques. This

technique under-samples the majority class and over-samples the minority classes until

they are balanced between all classes.

The proposed techniques are implemented for 12 UCI data sets ecoli, landsat, letter, msplice,

page-bk0, penbased, segment0, shuttle, thyroid, vehicle1, wavefm3 & yeast and performance

is compared with Adaptive Synthetic (ADASYN), SMOTE, MWMOTE and others. Figure-

2.9[74], show how synthetic samples look like in different techniques.

Many advanced sampling-based techniques are also present in the literature [26, 69, 110,

135].

2.4.4 Algorithm level approaches

Although lots of works have been done under data level categories, but these external level tech-

niques create a lot of computational overhead [141]. Algorithmic approaches concentrate on
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Figure 2.9: Illustration of Data Sampling Methods

proposing either new algorithms or modifying existing algorithms to improve the model’s ac-

curacy. GP is an evolutionary technique used to solve many problems by researchers. Bhowan

et el.[15] proposed a cost adjustment approach in GP. The adjustment of cost is also called the

internal approach. In GP, adjustment of cost can be performed by complying with appropriate

fitness functions. This fitness function should be designed in such a way that a solution per-

formed good for the minority as well as the majority classes, should be rewarded. Against this,

a solution performing well only for the majority class should be penalties. Bhowan et el.[15]

show that as the fitness function, neither accuracy (acc) nor average class accuracy (ave), fully

solve the issues of unbalanced classification. Therefore, they proposed 3 new fitness functions:

amse, incr and corr. The amse fitness function, is based on average mean square error. This

work is based on an approach in which solutions with the smaller deviation between predicted

and expected values will be rewarded. The incr fitness function assigns incremental rewards to

solutions whose predicted output falls further away from the class boundary. The corr fitness

function, is based on correlation ratio. As a benchmark, authors tested their proposed fitness

function on 6 UCI data sets Ion, Spt, Ped, Bal, Yst1 and Yst2. In this work authors claim that

for the binary classification, the newly introduced fitness functions performed better in the term

of accuracy.
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For solving multi-class classification problems, Bhardwaj et el.[13] have proposed a Ge-

netically Optimized Neural Network (GONN) model. Here the complete classifier is composed

of multiple GP tree, in which each tree represent one class. For each tree, if a tree output is

1, it belongs to that class; otherwise, it belongs to another class. For a given sample, only one

tree’s output will be one and other trees outputs will be 0. Tree generation is restricted so that

it preserves the structure of the Artificial Neural Network (ANN) model. The function set is

defined as {P,W,+,-,*,%} , where P is sigmoid function, work as the activation function and

W is the weight function. {+,-,*,%} are mathematical operators: add, subtract, multiplication,

and division, respectively. Terminal set T is set of feature variables. The performance of the

proposed technique is compared with ANN, GA, SVM, etc., and results are found comparably

good than SVM, GA and ANN.

For Unbalanced classification, Zhang et el.[141], proposed an Evolutionary Cost-Sensitive

Deep Belief Network (ECS-DBN), in which they focus on class-dependent miss-classification

costs. To optimize the misclassification cost of Deep Belief Network (DBN), authors use an

evolutionary algorithm variant named adaptive differential evaluation. For evaluation, 58 binary

classification data sets are taken from KEEL (Knowledge Extraction based on Evolutionary

Learning) data set repository [5]. Although the author took the data set of binary classification

for evaluation, it may also be applied in multi-class classification.

For high dimensional unbalanced data classification, Pei et el.[97], proposed a new fitness

function. This newly proposed fitness function is seen as an approximation AUC measure. The

authors proposed a strategy to reuse previous good GP trees to save processing time and improve

efficiency. Tahir et el.[120], proposed a GP fitness function based on Entropy and Information

Gain to handle unbalanced data-set. Authors named this approach as Entropy and Information

Gain based Genetic Algorithm (EIG-GA).

Numerous research works have been done to solve the unbalanced data classification are

criteria based on assigning weight to the majority and the minority class classification per-

formance. Tran et el.[126], assigned equal weight importance to the accuracy of both class

samples. Xong et el.[151], proposed a Weighted Extreme Learning Machine (WELM) for un-

balanced data classification. This work benefited from the concept of original extreme learning

machine (ELM) which is simple and suitable to apply. Lu et el.[82] and Raghuwanshi [101],

also proposed an improved version of a similar approach.
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Several techniques are proposed in the literature, based on the distance between predicted

and actual outcomes [39, 15, 21, 34]. In GP, these fitness functions calculate the difference

between the real and the predicted output for each instance during training in different way.

Evolutionary Multi-objective Optimization (EMO) is also gaining popularity in research

which facilitates solution to learning with multiple conflicted objectives. EMO based classifiers

a Pareto optimal front based solutions are evolved to capture the performance trade-off between

the different conflicting objectives [37]. This is different than single solution predictor classifier

techniques where the fittest individual is returned from the training process. In this approach,

the accuracies of the minority and majority classes will be considered separately in the learning

process. EMO achieves this by treating the objectives independently in the learning procedure

using the notion of the Pareto Dominance concept in fitness. Pareto Dominance concept es-

tablishes a rank based individual in the population according to how perfectly those solutions

perform on all the objectives concerning each other [63, 16, 29].

2.4.5 Ensemble of classifiers

In this approach, new techniques are proposed by combining two or more existing techniques

or classifiers to improve the accuracy of the model. Bhowan et el.[16] proposed an ensemble

approach of multi-objective genetic programming to generate efficient classifiers for binary

class classification. In this work of binary classification, the minority class accuracy and the

majority class accuracy are treated as two objectives. For the cost adjustment, the authors

utilized two existing Pareto-based fitness calculation techniques: Strength Pareto Evolutionary

Algorithm 2 (SPEA2) by Zitzler et el.[148], and non dominated sorting genetic algorithm II

(NSGA-II) by Deb et el.[37]. These techniques are based on dominance count and dominance

rank. NSGA-II use dominance rank, which is the count of all solutions in the population, which

dominate a given solution. SPEA2 uses both dominance rank and dominance count. Dominance

count is the total count of solutions that were dominated by a particular solution. Again for

diversity crowding metrics is used, which is nothing but Manhattan distance between solutions

in objective space. Thus, solutions in the sparse region are preferred compared to solutions in

the dense region if both solutions have the same fitness. Thus generated Pareto front classifiers

work together by a voting mechanism. The authors use two ensemble selection strategies:
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accuracy based approach and offline Ensemble selection algorithms (off-EEL). Also, the authors

compared two voting schemes namely: traditional majority vote and a fitness-weighted vote.

Six binary classification data sets Ion, Spt, Ped, Bal, Yst1 and Yst2 are taken, and performance is

compared with Support Vector Machines (SVM) algorithm [123]. SVM supersedes on majority

class accuracy whether as their proposed ensemble GP approach supersedes on minority class

accuracy.

For multi-class classification, Fernandes et el. [46] proposed an Ensemble of classifiers

based on the Evolutionary Multi-Objective genetic Sampling for Unbalanced Classification (E-

MOSAIC) technique. The concept of E-MOSIAC is based on a multi-objective genetic algo-

rithm named NSGA-II [37]. First a predefined N, balanced samples are generated from training

data. The sample size is based on 90% of the total minority example count. For example, if

there are 3 classes and the smallest minority class has 100 examples, then the sample size will

be 3*100*0.90 i.e. 270 (90 from each class). In the genetic algorithm (GA), each sample is

treated as an individual. The solution is represented as 1 if an example is selected and 0 if an

example is not selected. This individual (sample) is used to train a base classifier, MLP. Two

statistical approaches are used for measuring performance: Geometric Mean ()G-Mean) and

moving Average Unit Cost (mAUC). The comparison shows that E-MOSAIC performed better

than DyS, ROS and RUS.

Singh et el.[115], proposed a transfer learning approach to solve the Unbalanced clas-

sification of histopathological images. In this work, authors trained a VGG-19 model with

ImageNet dataset [113, 38]. The learned knowledge is applied to the learning of histopatholog-

ical images. From different layers of VGG19, the various number of features are extracted, and

the Random Forests algorithm were used to classify these histopathological images [77]. The

experiments were performed on this large scale dataset, which contains 277524 images, and

the authors conclude that this approach handles the Unbalanced nature of data. Many ensemble

based methods are also present in the literature [51, 61, 124, 146].
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2.5 SUMMARY

This chapter presents the background and related work for the thesis. This background details

cover machine learning (ML), evolutionary computing, and genetic programming. The related

work discusses the literature review, including the challenges with unbalanced classification,

various methods to handle it, the existing approach’s limitations. The existing unbalanced clas-

sification methods are categorized into three groups: Data level, Algorithm level, and Ensemble

of classifiers. The unbalanced data set has its complexity and the model’s accuracy, in this case,

is not straightforward. Lots of work have been done in the literature. But there is room for

improvement of techniques to be used for unbalanced data classification.
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CHAPTER 3

ASSESSMENT OF WEIGHT FACTOR

IN GP’s FITNESS FUNCTION FOR

UNBALANCED DATA

CLASSIFICATION
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This chapter briefly introduces the custom weight assignment to the minority class samples

during classifier training, suited for unbalanced data classification. After that, the proposed

methodology for this weight assignment in fitness function is given, followed by experimental

setup and results. The last section summarizes the finding of the custom weight assignment to

the minority class while training a GP-based classifier.

3.1 INTRODUCTION

Various ML techniques like K-nearest neighbour (KNN) [52, 137], Support Vector Machine

(SVM) [86, 129], Multilayer Perceptron (MLP) [24, 138], Decision Tree (DT) [73, 87], fuzzy

logic [83, 96], etc are used for data classification. Recent research works in the literature show

that classifiers give biased results when data sets are unbalanced [46, 74, 141, 147]. This bias-

ing is included because of higher sample counts of the majority class samples during training.

As the minority class sample count is lower, its weighted impact on the learning ability of the

classifier will also be lower. As a solution to this learning biasing, the data-level approach may

be used, to create a trade-off between the majority and the minority class samples count. This

trade-off is achieved either by over-sampling minority class data points or under-sampling of

majority class data points. These data level approaches introduce a high computational cost.

Also, over-sampling adds over-fitting, and under-sampling introduces the under-fitting of the

classification model, respectively [74]. Also, These data-level techniques may suffer from loss

of critical information, or the creation of noisy data contained in samples during the processing

of unbalanced data [142]. Therefore, to handle unbalanced data classification issues, we have

focused on the internal approach, i.e., the algorithm level approach. Genetic programming

(GP) is a nature-inspired optimization algorithm introduced by Koza [71, 72]. In GP, many

researchers focused attention on adapting the new fitness function to reward solutions that are

accurate on both the minority and the majority classes [15, 100]. Classification accuracy, as the

fitness function, doesn’t solve the issues of unbalanced classification [15]. Therefore, numerous

works have been done to solve the unbalanced data classification. Many of them are based on

the criteria of assigning distinct weight to the majority, and minority class classification perfor-

mance [9, 82, 88, 126]. Although the proper adjustment of weights during the training phase

improves the model classification performance, assigning these weights can require a priori
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domain knowledge [15]. Therefore this chapter evaluates the minority class weightage during

classifier training and concludes a generic value that should work for most of the classification

problems.

3.2 PROPOSED METHODOLOGY

In GP, one approach to resolve the Unbalanced classification problem is to assign a custom

high weight to the minority class during training. This custom weight assignment may nullify

the impact of higher counts of the majority classes during the learning phase of the classifier.

The GP fitness function may introduce the custom weight assignment for the minority class

samples. This research work assesses the impact of weight factors in GP’s fitness function for

unbalanced data classification. For custom weight assignment to the minority class, we define

fitness function as Eq. 3.1.

Fweight =W ∗ T P
T P+FN

+(1−W )∗ T N
T N +FP

(3.1)

where TP indicates true-positive, TN indicates true-negative, FP indicates false-positive,

and FN indicates false-negative counts for predictions.

In Eq. 3.1, the first part represents the minority class accuracy multiplied by a custom

weight W and the second part describes the majority class accuracy by a custom weight (1−W ).

3.3 EXPERIMENTAL SETUP

Our objective is to assess the impact of the weight factor in the GP fitness function for gen-

erating a classifier that gives accurate results over each class. For that, we have performed

extensive experiments on five unbalanced problems with different weight factors. These data

set are ABL-9-18, YEAST-2, YEAST-1, CKD, and WDBC. We have performed these exper-

iments by assigning minority class weight values of 0.2, 0.4, 0.5, 0.6, and 0.8. Accuracy is

always favourable toward the majority class due to its higher sample count. Against this, as the
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AUC is non-biased since it treats the minority and majority class learning equally, we measure

performance on the AUC values. In this research work, we use StratifiedShuffleSplit. For each

weight value, 30 experiments are executed and mean AUC values are calculated for each Un-

balanced problem. In each experiment, 80% data is used for training, and 20% data is used to

evaluate the classifier’s performance. This partitioning is done randomly for each experiment.

GP is implemented in Python. For population initialization, we have used the “ramped half

and half” method. This method generates a wide variety of individuals of various sizes, and

shapes [71]. The tree initialization depth is taken as (5,15). The function set contains {+,-, *,

/, and sigmoid} functions. The reproduction, crossover, and mutation probability is set to 0.10,

0.70, and 0.20, respectively. Population size is set to 200, and max generation is set to 100.

For simplicity, sub-tree crossover, sub-tree mutation, and tournament selection with tournament

size two is taken. For all these experiments GP parameter values are given in Table-3.1.

Table 3.1: GP Parameter Setting For Minority Class Weight Assessment

Parameter Value

population initialization ramp half and half

population size 200

maximum generation 100

max tree height 15

min tree height 5

function-set +, -, *, /, sigmoid

tree terminals feature variables & random constants

reproduction 0.10

mutation 0.20

crossover 0.70
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3.4 RESULTS

Accuracy treats the performance of each class blindly and uses the total samples count irre-

spective of which class has how many instances. As majority class samples have higher sample

counts, performance in terms of accuracy is always biased toward the majority class. Better

performance measurement for Unbalanced classification is the area under the ROC (receiver

operating characteristic curve) known as AUC. The AUC considers similar offerings to both

minority and majority classes when evaluating the performance of an algorithm [91, 32]. As

AUC is a non-biased performance measurement, we consider our results based on the AUC

values.

Table 3.2: Custom Minority Class Weight vs Produced AUC Values

Data-Set W=0.2 W=0.4 W=0.5 W=0.6 W=0.8

ABL-9-18 0.764 ±0.078 0.753 ±0.108 0.807 ±0.059 0.785 ±0.08 0.761 ±0.083

YEAST-2 0.881 ±0.038 0.905 ±0.025 0.901 ±0.025 0.913 ±0.023 0.898 ±0.023

YEAST-1 0.719 ±0.031 0.747 ±0.035 0.747 ±0.029 0.742 ±0.035 0.639 ±0.035

CKD 0.983 ±0.025 0.989 ±0.022 0.991 ±0.021 0.989 ±0.022 0.989 ±0.022

WDBC 0.921 ±0.029 0.922 ±0.029 0.930 ±0.025 0.932 ±0.021 0.906 ±0.021

Experimental results are summarized in Table-3.2 and Figure 3.1, in which the mean value

of AUC and the standard deviation is given. Out of five Unbalanced problems in this work,

three benchmark Unbalanced problems produced the best result values when minority class

weightage in fitness function is set to 0.5. These three Unbalanced problems include ABL-9-18,

YEAST-1, and CKD. Two Unbalanced problems YEAST-2, and WDBC are slightly lower on

W=0.5 than W=0.6 but better than other values of W. For YEAST-2, the performance difference

is 0.012, and for WDBC, the difference is 0.002 compared to W=0.6. Setting the value of W

in an apriori and domain-independent manner is required for designing any generic method. If

we define a range, then the optimal values range of the minority class weightage is 0.50±0.10.

Therefore we can conclude that as a generic approach, we can set the value of W equal to 0.50.
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Figure 3.1: Custom Minority Class Weight vs Produced AUC Values

3.5 SUMMARY

The Unbalanced distribution of data across various classes generates intense challenges to clas-

sification algorithms. One way to solve these challenges is to assign a custom weight to the

classes during model training. In GP, the learning process of classifiers is governed by the

fitness function, and this fitness function can easily incorporate custom weight assignments.

Setting the value of W in an apriori and domain-independent manner is required for designing

any generic method. Therefore, we performed extensive experimentation on five UCI repository

base Unbalanced problems in this work, with various values of minority class weight. Based

on experimental results, we can conclude that for better handling of Unbalanced classification

problems in a generic manner, we can set the weight value to 0.5. This custom weight assign-

ment for the minority class samples during training generated better solutions, which tackle the

challenges of the Unbalanced data classification problems. Thus custom weight factor in GP fit-

ness function gives more balanced and accurate solutions for the Unbalanced data classification

problems.
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CHAPTER 4

AN EUCLIDEAN DISTANCE AND

WEIGHT-BASED FITNESS FUNCTION

IN GP FOR UNBALANCED DATA

CLASSIFICATION
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This chapter briefly introduces the custom weight assignment to the minority class sam-

ples and the distance between actual and predicted values during classifier training, suited for

unbalanced data classification. After that, the proposed methodology for using weight and dis-

tance in fitness function is given, followed by experimental setup and results. The last section

summarizes the finding of the proposed fitness function while training a GP-based classifier.

4.1 INTRODUCTION

Unbalanced data significantly challenges traditional classification algorithms. A variety of al-

gorithms can do classification accurately, and their behaviour is accurate when the sample count

distribution of objects or events is equal or nearly identical [55, 57]. These standard algorithms

like Support Vector Machine (SVM), K-nearest neighbour (KNN), logistic regression, decision

tree (DT), Naive Bayesian (NB), etc., may converge to a sub-optimal solution [36]. The higher

sample count of the majority class significantly influences the classifier’s learning capability

during training. Due to this influence, classifiers give predictions biased toward the majority

class [46, 141, 147]. Small sample size, lack of density, and high dimensionality also affect

the learning process of algorithms [18, 134]. The learning algorithms guided by generic per-

formance metrics like classification accuracy lead to a biased classification toward the majority

classes [8, 105, 130].

To tackle Unbalanced classification issues, the data-level approaches focus on the over-

sampling of the minority class examples or under-sampling of the majority class examples

[4, 56, 70, 105]. However, oversampling the minority class sample may lead the classier to

be over-fitted and create a noisy sample. On the other side, under-sampling of majority class

examples may lead the classifier to under-fit or miss some crucial samples from the learning

process [74, 142]. Also, these methods have drawbacks of high computational cost and a priori

knowledge of the problem space [15, 141]. Another group of techniques calls algorithm-centric

techniques either focus on proposing a new algorithm or modification to existing algorithms so

that learning toward the minority class sample given much attention during training [57, 79,

142]. In this way, these approaches focus that the majority class data point’s higher count does

not supersede the minority class data points. Genetic programming (GP) is a nature-inspired
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evolutionary computing technique [72]. GP, motivated by natural evolution, has been applied

in various domains to solve a wide variety of problems [2, 14, 17]. The training ability of GP

has also affected if the nature of the data is Unbalanced.

Fitness function is the primary criteria in GP for rewarding the right solution. How-

ever, in Chapter 2, section 2.3.2.1, we have seen that the standard fitness function has two

significant drawbacks. These drawbacks may lead the GP framework to generate biased and

under-fitted classifiers. Therefore GP with standard fitness function is unsuitable for the classi-

fication problems with the unbalanced nature. To resolve these issues, numerous works focus

on assigning more weight to minority class samples during training for handling biased learn-

ing [9, 82, 88, 126]. The difficulty of such an approach is that assigning these weights may

require problem-specific knowledge [15]. Different researchers also employed measuring dis-

tance how far the prediction point located, compared to the actual point in the solution space

[21, 34, 15]. We utilized both these mechanisms and proposed a Euclidean distance and weight-

based (EDWB) fitness function in GP to classify the Unbalanced data. The proposed fitness

function focused on the cost adjustment of solutions during their fitness calculations. The pro-

posed method doesn’t require any domain-specific knowledge or data-prepossessing techniques

when applied to an unbalanced dataset.

4.2 PROPOSED METHODOLOGY

This work combines the custom weight assignment to minority class and the distance between

the predicted and the actual results. We proposed a new fitness function to handle unbalanced

data classification. This proposed fitness function is given as Eq. 4.1. Based on our previous

experiment in Chapter 3, we set the value of W as 0.50 in this fitness function. Thus, we give

equal weightage to both the classes in the proposed fitness function.

Fproposed =
Nma jor

∑
i=1

∣∣distma jori

∣∣2
2∗Nma jor

+
Nminor

∑
i=1

|distminori|2

2∗Nminor
(4.1)

Where,
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Nmajor: Total count of majority samples in training data.

Nminor: Total count of minority samples in training data.

distmajor i: Distance of predicted value from actual value in the ith majority class sample.

distminor i: Distance of predicted value from actual value in the ith minority class sample.

Here, our objective will be to minimize the fitness function values.

The above-proposed fitness function in equation-4.1 has two parts. The first part caters

to the classification performance of the majority class, whether as second part caters to the

classification performance of the minority class. In other words, it gives importance to the

minority class training samples the same as the majority class training samples. In this way,

the new fitness function resolves the first issue of the standard fitness function mentioned in the

previous section.

Figure 4.1: Illustration of Classifier Performance Evaluation

Also, the proposed fitness function calculates the distance between the predicted value

and the expected value. In binary class classification, the expected output values are 0 & 1. As

shown in equation-2.3, value 0.5 acts as a boundary value for binary classifiers. If the distance is

less than 0.5, this prediction is treated as correct. In figure-4.1, four classifiers are shown. The x-

axis denotes different training samples, and the y-axis shows the distance between the predicted

value and the actual value. As in the case of all four classifiers, a distance of the predicted

value from the actual value for each sample training point is less than 0.5, and all classifiers

have a classification accuracy of 100%. But in reality, classifier 4 is better than classifier 3, and
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classifier 3 is better than classifier 2, and classifier 2 is better than classifier 1. The proposed

fitness function as equation-4.1, represents this fact mathematically. In this way, this newly

proposed fitness function resolved the second issue of the standard fitness function. In summary,

the above-proposed fitness function solves both the problem of the standard fitness function.

Thus by assigning equal weightage to the minority and the majority class and considering the

Euclidean distance between actual and predicted values, the proposed fitness function provides

a better and more generalized solution toward unbalanced classification.

Summary of the proposed approach

The proposed GP approach is summarized as Algorithm-2. The proposed method uses a new

fitness function to resolve the problem of the standard fitness function. Also, since this method

resolves the issue of under-fitting, its side effect is possible if we train many iterations.

To avoid this, at every 5th generation, we calculate the classification accuracy of the best

program in the population. If classification accuracy reaches to 100%, we decrease the total

generation count. We set this total generation value to the minimum of total generation and

K% more than the current generation. Multiple runs of the proposed approach were performed,

and an excellent result was found at K=25. For example, let’s assume that the total generation

is defined as 100. Now, if at the 20th generation, the best program in the population shows

100% accuracy, then we will set the total generation value to (20+5), i.e., 25. This will avoid

the problem of over-fitting the model. Therefore, this approach balances between underfitting

and overfitting of model properties.

Thus the proposed approach solves the problem of biased classification by addressing both

the issues with the standard GP approach.

4.3 EXPERIMENTAL SETUP

To evaluate the proposed method, we have performed extensive experiments on five unbalanced

problems with varying levels of the Unbalanced factor. The five benchmark datasets are ABL-
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Algorithm 2 Proposed Genetic Programming Algorithm
1: procedure GENPROG(X ,T ) ▷ X is input variables and T is constant

2: N← popSize

3: gTotal← 100 ▷ Total Generation

4: pReprod← 0.10 ▷ reproduction probability

5: pCrssOvr← 0.70 ▷ crossover probability

6: pMutn← 0.20 ▷ mutation probability

7: bestFtnessGen← 0

8: Pcurrent ← generate N random programs

9: Calculate f itness of all programs using proposed fitness function.

10: gen← 0

11: bAcc100Achieved← 0

12: while gen ̸=gTotal do

13: Pnew← φ

14: Copy top pReprod∗N best fitness programs to Pnew

15: Generate pCrssOvr∗N programs by crossover and add to Pnew.

16: Generate pMutn∗N programs by applying mutation and add to Pnew

17: Pcurrent ← Pnew

18: Calculate fitness of all programs in Pcurrent .

19: // check stopping criteria

20: if (gen%5 == 0) && (bAcc100Achieved == 0) then

21: trainAcc = training accuracy of best program

22: if (trainAcc == 100) then

23: bAcc100Achieved← 1

24: gTotal ← min(gTotal, 1.25*gen)

25: return top program with best fitness

9-18, YEAST-2, YEAST-1, CKD, and WDBC. This Unbalanced factor varies from 6:94 to

37:63. The proposed method is also compared with standard ML algorithms. All approaches

are implemented in Python. To make the comparison in the same environment and similar

testing parameters, we also implemented SVM, KNN, and GP with standard fitness function.

The k-nearest neighbour’s algorithm is a non-parametric classification algorithm, and it is highly
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used for classification and regression problems. KNN’s performance depends on the value of K.

Therefore, we performed a grid-test for all data sets separately to find the optimal value of K. In

this grid-test, we have taken K values in the range of 1 to 30. This grid test result summary for

five-fold cross-validation is shown in Table-4.3. For comparison, we have taken the KNN result

with the best K values. In this research work, we use StratifiedShuffleSplit. For each benchmark

problem, 30 experiments are executed and mean values of accuracy, recall, specificity, G-mean,

and AUC, are calculated. In each experiment, 80% data is used for training, and 20% data

is used to evaluate the classifier’s performance. This partitioning is done randomly for each

experiment.

For GP population initialization, we use the “ramped half and half” method. The tree

initialization depth is taken as (5,15). The function set contains {+, -, *, %, sigmoid, log,

sqrt, sin, absolute, max, and min} functions. We conducted extensive experiments to decide on

different parameter settings. Based on these experiments, we set the reproduction, mutation,

and crossover probabilities of 0.10, 0.20, and 0.70, respectively. We set population size as 1000

and max generations as 200. For simplicity, the tournament selection, the sub-tree mutation,

and the sub-tree crossover are considered. These GP parameter values are given in Table-4.1.

Table 4.1: GP Parameter Setting for Proposed Method

Parameter Value

population initialization ramp half and half

population size 200

maximum generation 1000

max tree height 15

min tree height 5

function-set +, -, *, %, sigmoid, log, sqrt, sin, absolute, max, and min

tree terminals feature variables & random constants

reproduction 0.10

mutation 0.20

crossover 0.70
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Table 4.2: Proposed GP Method Performance Evaluation

Data-Set Imbalance Algorithm Accuracy Recall Specificity G-mean AUC

Ratio (avg± std) (avg± std) (avg± std) (avg± std) (avg± std) (avg± std)

ABL-9-18 06 : 94 GPedwb 76.640 ± 6.910 0.838 ± 0.144 0.762 ± 0.076 0.794 ± 0.070 0.800 ± 0.069

GPstd 95.380 ± 1.000 0.329 ± 0.125 0.990 ± 0.008 0.560 ± 0.110 0.659 ± 0.062

KNN 94.560 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000

SVM 94.560 ± 0.000 0.000 ± 0.000 1.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000

YEAST-2 11 : 89 GPedwb 85.420 ± 4.230 0.953 ± 0.036 0.842 ± 0.005 0.895 ± 0.024 0.897 ± 0.022

GPstd 93.610 ± 1.750 0.630 ± 0.127 0.974 ± 0.011 0.780 ± 0.080 0.802 ± 0.064

KNN 94.190 ± 1.190 0.573 ± 0.081 0.988 ± 0.005 0.750 ± 0.055 0.780 ± 0.042

SVM 94.920 ± 1.260 0.694 ± 0.100 0.981 ± 0.007 0.823 ± 0.060 0.838 ± 0.050

YEAST-1 16 : 84 GPedwb 51.820 ± 5.720 0.926 ± 0.045 0.438 ± 0.074 0.633 ± 0.044 0.682 ± 0.027

GPstd 87.410 ± 1.280 0.392 ± 0.083 0.969 ± 0.015 0.613 ± 0.062 0.681 ± 0.038

KNN 87.920 ± 1.540 0.494 ± 0.069 0.955 ± 0.014 0.685 ± 0.048 0.725 ± 0.034

SVM 87.660 ± 1.340 0.366 ± 0.076 0.977 ± 0.012 0.595 ± 0.061 0.672 ± 0.037

CKD 27 : 73 GPedwb 99.790 ± 0.790 0.993 ± 0.028 1.000 ± 0.000 0.996 ± 0.015 0.996 ± 0.014

GPstd 99.380 ± 1.270 0.978 ± 0.045 1.000 ± 0.000 0.989 ± 0.023 0.989 ± 0.023

KNN 83.020 ± 4.900 0.430 ± 0.148 0.987 ± 0.035 0.642 ± 0.110 0.708 ± 0.076

SVM 78.120 ± 3.180 0.222 ± 0.113 1.000 ± 0.000 0.452 ± 0.138 0.611 ± 0.057

WDBC 37 : 63 GPedwb 92.600 ± 2.920 0.955 ± 0.034 0.909 ± 0.044 0.931 ± 0.027 0.932 ± 0.026

GPstd 93.650 ± 1.820 0.891 ± 0.037 0.963 ± 0.020 0.926 ± 0.021 0.927 ± 0.021

KNN 91.400 ± 2.800 0.819 ± 0.076 0.969 ± 0.019 0.890 ± 0.041 0.894 ± 0.037

SVM 90.640 ± 2.690 0.785 ± 0.082 0.977 ± 0.018 0.875 ± 0.043 0.881 ± 0.038

4.4 RESULTS

For each benchmark problem and each method, a total of 30 runs are performed. For these

30 runs, we calculated the mean values of classification specificity, sensitivity, accuracy, G-

mean, and AUC values. Table-4.2 contains details of these experimental outcomes. In our

experiment, we have taken results for best K values in the case of KNN. The experimental

results are summarized in Table-4.2. This result table shows that even when the data set is highly

unbalanced (ABL-9-18 & YEAST-2), the proposed approach gives a balanced performance.

The proposed method performance difference is much higher when the Unbalanced ratio of the

data set is high. When this Unbalanced ratio decreases, the difference between the proposed

method with the standard GP method, SVM, and KNN decrease. However, in these cases, the

proposed method also outperforms the other method on the scale of recall, G-mean and AUC.
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Thus, the proposed method outperformed the SVM, KNN, and GPstd for four benchmark

problems by generating better AUC, G-mean, and TPR values. On one Unbalanced problem,

YEAST-1, the proposed method performs a bit lesser than KNN, but in this case, also, it out-

performs the SVM and GPstd . This work aims to present the technique that gives unbiased

and balanced performance over the majority and minority classes. We successfully achieved

this, and our proposed method gives unbiased and balanced performance over the minority and

majority classes. This balancing factor is the main reason behind a bit lower value for the

‘specificity’ of our proposed method. As the proposed fitness function gives the same emphasis

to the minority class and the majority class, it nullifies the majority class sample’s strong influ-

ence over the minority class samples during training. This identical weight assignment solves

the issue of biasing during training and generates better classifiers. Again, by calculating the

Euclidean distance, a classifier predicting close to the expected values gets more reward. This

distance considered strategy resolves the issue of under-fitting. The outcome of this distance is

that the proposed fitness function generates well-fitted classifiers. These are the main reasons

which make the proposed technique outperform other techniques.

4.5 SUMMARY

Unbalanced data significantly challenges traditional classification algorithms. The standard

algorithms may converge to a sub-optimal solution. In this work, we proposed a new fitness

function for GP for unbalanced data classification. We applied the proposed method to five

unbalanced classification problems and calculated different performance evaluation metrics.

The presented method results are compared with SVM, KNN, and GP with standard fitness

function. We found that our approach gives better or more competitive results than the GP with

the standard fitness function, KNN, and SVM methods.
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Table 4.3: KNN Grid Test Result for AUC values

K ABLN-9-18 YEAST2 YEAST1 CKD WDBC

1 0.61972522 0.798027087 0.688048607 0.76455314 0.89296847

2 0.643254126 0.864921389 0.754099119 0.744625604 0.934767607

3 0.668395689 0.895435736 0.782166859 0.776086957 0.944920622

4 0.687061133 0.909969655 0.799635177 0.757004831 0.952889505

5 0.702301665 0.931918236 0.80684541 0.737379227 0.959625865

6 0.705321723 0.934918277 0.819424615 0.725422705 0.960220713

7 0.711054398 0.940635333 0.82475227 0.712198068 0.960813904

8 0.696933587 0.940081365 0.830299711 0.719323671 0.962979124

9 0.694648451 0.942192001 0.833442369 0.738647343 0.967061109

10 0.699974361 0.943701275 0.833709472 0.751690821 0.967691062

11 0.714175321 0.946207962 0.835264257 0.74692029 0.970849548

12 0.735336004 0.948926061 0.839388749 0.736835749 0.971913934

13 0.73067339 0.949452137 0.843094758 0.736231884 0.97280599

14 0.727487159 0.952968704 0.843888523 0.722101449 0.973072695

15 0.726851191 0.952112886 0.845286098 0.712983092 0.972583379

16 0.72849529 0.951975232 0.844965506 0.698369565 0.973053318

17 0.731355419 0.95443793 0.844837955 0.70205314 0.973347492

18 0.740822578 0.953815671 0.84489213 0.695471014 0.973020422

19 0.736306669 0.953579147 0.84595797 0.682065217 0.974224232

20 0.727957982 0.955842814 0.847653678 0.63955314 0.973928964

21 0.728431671 0.956424726 0.848489789 0.6647343 0.973432477

22 0.722823516 0.957252078 0.847330686 0.674154589 0.973372427

23 0.723421283 0.957512403 0.847187706 0.674698068 0.973105244

24 0.725616574 0.956647756 0.847832318 0.700241546 0.973000882

25 0.728799867 0.955681099 0.849753813 0.703804348 0.972742885

26 0.724306437 0.959143095 0.85207099 0.701388889 0.974065344

27 0.725017484 0.962106367 0.854487087 0.694806763 0.973574165

28 0.729128539 0.962952822 0.854063632 0.678562802 0.974000907

29 0.722415723 0.965028216 0.854481944 0.675362319 0.974578165
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CHAPTER 5

MULTI-OBJECTIVE GP APPROACH

FOR CLASSIFICATION OF

UNBALANCED DATA
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This chapter briefly introduces multi-objective optimization and a well-known multi-objective

evolutionary optimization technique NSGA-II. After that, the proposed methodology is pro-

vided, followed by the experimental setup and results. The last section summarizes the finding

of the proposed method while generating Pareto-front.

5.1 INTRODUCTION

Standard classification algorithms give biased results when data sets are Unbalanced. Genetic

Programming, a machine learning algorithm based on the evolution of species in nature, also

suffers from the same issue. In the previous chapter, we have seen that by assigning equal weight

to the minority class samples, with respect to the majority class samples, it is possible to nullify

the biasing issue of standard GP. Also, by adding the Euclidean distance between predicted and

expected class values, we can generate a better-fitted GP classifier. However, in that proposed

approach assigning weight is a priori process, and only a single solution is generated in this

standard GP method. Also, the classifier performances toward the majority and minority classes

are conflicted as boosting the accuracy of one class depletes the performance of the other class

[85, 103].

Multi-objective problems (MOP) refer to the problem where the solution quality is mea-

sured by its capability, referencing more than one possible conflicting objective. [45]. In the

case of unbalanced data classification, the majority class accuracy and the minority class accu-

racy may be considered two separate conflicting objectives. Thus the Unbalanced classification

problems may be considered as MOP. In the evolutionary multi-objective optimization (EMO)

approach, a set of solutions, having a good trade-off between both class accuracies, is evolved.

These trade-off solutions generate a Pareto-front in a single execution by keeping both class

performance objectives distinct during the evolution. EMO has been applied in various real-

world problems [7, 121]. These applications include but are not limited to medical [41, 106],

finance [99], supersonic wing design [95], electric vehicle control [28], oil production planning

[114], Scheduling problems [94, 111] and routing [125, 140]. The main advantage of the EMO

approach is that it can produce a set of good-performing classifiers in a single experimental

execution. Against the MOGP approach, the canonical GP approach requires multiple experi-
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Figure 5.1: Pareto-front for a MOO Problem with 2 Objective

mental runs and a priori objective-based fitness function. Another advantage of MOGP is that

it explicitly includes the learning bias into the algorithms.

5.2 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization refers to mathematical problems which involve more than one

objective function to be optimized simultaneously [23]. This is also called multi-criteria opti-

mization or Pareto-optimization. In the case of MOP, it is possible that a solution is better than

other on one objective but lower or equal on other objectives. In this case, for comparing two

solutions, the concept of ‘dominance’ comes in existence.

Dominance and Pareto Optimality

A solution dominates the other solution, if it is better than other for at least one objective and

equal or greater than on other objectives. If we denote dominate symbol by⪰. For n objectives,

we define the solution X dominated to solution Y as following:
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Figure 5.2: Dominance Rank

X ⪰ Y ⇐⇒ ∃i ∈ {1, ...,n},xi > yi; && ∀i ∈ {1, ...,n} xi ≥ yi (5.1)

In case of conflicting objectives, no single solution exists which dominates all other so-

lutions. Therefore, all non-dominated solutions have the property that their quality cannot be

improved with respect to a given objective without affecting the other objective quality. Thus,

in the search space, such solutions normally exist on the edge of the feasible regions, and the set

of all these non-dominated solutions is known as the Pareto-front. Fig. 5.1, shows a Pareto-front

for two objective minimization problem [40].

Based on this dominating property, below three important terms may be defined [29]:

1. dominance-rank: Number of solutions dominates the given solution.

2. dominance-count: Number of solutions dominated by the given solution.

3. dominance-depth: After performing dominance-based sorting, at which front the given

solution belongs.

Fig. 5.2 and Fig. 5.3, show a graphical representation of these terms [29].
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Figure 5.3: Dominance Count

Multi-objective Optimization Approaches

For Multi-objective Optimization problems various approaches based on evolutionary computa-

tion are presented by various researchers. In 1984, Schaffer et el. presented vector-evaluated ge-

netic algorithm (VEGA), where the whole population is randomly divided into sub-populations,

each assigned a fitness according to a distinct objective function. However selection and crossover

are performed globally [107]. Fonseca and Fleming, proposed Multi-Objective Genetic Algo-

rithm (MOGA) [49, 150] and Horn et al. proposed, Niche Pareto Genetic Algorithm (NPGA)

[1, 60] based on dominance rank. Zitzler et al. [149, 148] introduced, Strength Pareto Evo-

lutionary Algorithm (SPEA) based on dominance count and dominance rank. Again, Srinivas

and Deb proposed Non-dominated Sorting Genetic Algorithm (NSGA), based the concept on

dominance depth [117]. However, for M objectives and N population size, the complexity of

NSGA becomes O(M ∗N3). Another drawback of this is its non-elitism approach and the re-

quirement of defining a sharing parameter. To resolve these drawbacks, Deb et al. proposed

NSGA-II, based on a fast non-dominated sorting approach [37]. The computational complexity

of NSGA-II becomes O(M ∗N2). Authors show that, on most problems, NSGA-II can produce

much better-diversified solutions and better convergence to the true optimal Pareto-front.

NSGA-II is the most prominent MOEA and is used for comparing any newly introduced

MOEA technique. NSGA-II is applied to solve various research problems [64, 75, 90, 133, 136].
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Bhowan et. el. (2013), proposed multi-objective Genetic Programming (MOGP) for the classi-

fication of an Unbalanced dataset [16]. In their work, the author uses the majority class accuracy

and the minority class accuracy as two competing objectives during the training process. The

authors utilized an existing Pareto-based optimization technique Non dominated sorting genetic

algorithm II (NSGA-II) by Deb et al. (2002) [37]. For generating Pareto-front, NSGA-II, use

dominance rank, which is the count of all solutions in population, dominating a given solution

[139, 145]. Based on NSGA-II, Fernandes et al. (2019) proposed an ensemble of classifiers

based on the multi-objective genetic sampling for Unbalanced classification (EMOSAIC) tech-

nique [46].

In this work, we presented a logarithmic distance-based MOGP approach to classifying

Unbalanced data. The proposed approach utilizes the logarithmic value of the distance between

predicted and expected values. This logarithmic values for the minority and the majority classes

are treated as two separate objectives while learning. The aim is to minimize this logarithmic

distance. In the final generation, the proposed approach generated a Pareto-front of classifiers

with a balanced surface representing the majority and the minority class accuracies for binary

classification.

In the next section, we will briefly discuss the NSGA-II technique and discuss our pro-

posed work in the succeeding section.

5.3 NON-DOMINATED SORTING GENETIC ALGORITHM

II (NSGA-II)

NSGA-II, proposed by Deb et. el. [37], has been a highly used multi-objective evolutionary

optimization technique since its inception in literature. Almost every newly proposed MO-

based method is compared with NSGA-II for evaluating its performance [62]. For efficient

computational complexity, NSGA-II introduces a fast non-dominated sorting procedure, briefly

described in section-5.3.
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Algorithm 3 Fast non-dominated sorting
1: procedure FASTNONDOMINATEDSORT( P) ▷ P is population

2: for p ∈ P do

3: Sp←Φ

4: np← 0

5: for each q ∈ P do

6: if p≺q then

7: Sp = Sp∪{q}

8: else

9: if q≺p then

10: np← np +1

11: if np =0 then

12: prank = 1

13: F1 = F1∪{p}

14: i = 1

15: while Fi ̸= Φ do

16: Q = Φ

17: for each p ∈ Fi do

18: for each q ∈ Sp do

19: nq← nq−1

20: if nq =0 then

21: qrank = i+1

22: Q = Q∪{q}

23: i = i+1

24: Fi = Q

25: return generated fronts F

Fast non-dominated sorting

Algo. 3 implements the fast non-dominated sorting procedure. Here, for each individual two

entities are calculated: domination-count (np), and a set of individuals that the individual dom-
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Figure 5.4: Calculation of Crowding-distance

inates (Sp). All individuals, with np = 0, belongs to first non-dominated front. Now, for each

individual p, belongs to this front, we visit each element q of its corresponding set Sp, and

decrease its domination count by one. In this process, if for any element the domination count

becomes zero, we assign this to the next non-dominated front (Q). Now, the same process is

performed with each element of and this front (Q) and again next front is identified. We perform

this procedure until all fronts are created.

Sustaining Diversity

Along with optimal front generation, maintaining diversity in Pareto-front is also a desired crite-

ria [109]. For maintaining diversity, NSGA-II uses the concept of fitness sharing in the form of

a crowded-comparison approach. For measuring crowded-factor (density factor) of an individ-

ual, the average distance of two individuals on either side of the given individual, is calculated.

The overall distance is defined as the sum of individual crowding-distance, corresponding to

each objective. Fig. 5.4, and Algo. 4 illustrate the calculation of the crowding distance process

[37].

For diversified Pareto-front, the selection process is performed based on crowding-comparison

(≺). This process use non-dominance rank and crowding distance. The value of ≺ is 1, if

[irank < jrank], or [(irank = jrank) & (idist > jdist)].
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Algorithm 4 Crowding distance calculation
1: procedure CALCCROWDINGDIST( SD) ▷ SD is nondominated set

2: n← |SD|

3: for each i ∈ SD do

4: SD[i]dist ← 0

5: for each o ∈ O do ▷ O is objective set

6: SD← sort(SD,o) ▷ do sorting w.r.f to each objectives

7: SD[1]dist ← ∞ ▷ set boundary values to infy

8: SD[n]dist ← ∞

9: for i← 2 to (n−1) do ▷ f max
o , f min

0 is max and min values of the oth obj func

10: SD[i]dist ← SD[i]dist +(SD[i+1]distm +SD[i−1]distm)/( f max
o − f min

0 )

NSGA-II Summary

The complete NSGA-II framework is presented as Algo. 5. GP parameters like population size,

total generation, crossover, and mutation rates are defined at the start. The initial population

(P) of programs is randomly generated. Each program, represented as a tree, contains various

mathematical functions as intrinsic nodes and feature variables and random constants as a leaf

node. The fitness of all programs with respect to each objective function is calculated, and non-

dominance rank is defined based on this. A new offspring population (Q) of size N is generated

using crossover and mutation. Selection is done based on the tournament selection process. In

each generation, an intermediate population (R) is generated by combining P and Q. Thus, the

size of R will become 2N. Here, all individuals are part of this intermediate population R, so

elitism is ensured. Now R is sorted based on non-domination. Now all the solutions are filled

in the next generation population as shown in Fig. 5.5. In this step, individual selections are

performed based on the crowding-comparison operator.
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Algorithm 5 NSGA-II Genetic Programming Algorithm
1: procedure GENPROGNSGA-II(X ,T ) ▷ X is input variables and T is constant

2: N← popSize ▷ Population size

3: gTotal← 100 ▷ Total Generation

4: pCrssOvr← 0.70 ▷ crossover probability

5: pMutn← 0.30 ▷ mutation probability

6: Pcurr← generate N random programs

7: gen← 0

8: while gen ̸=gTotal do

9: Calculate f itness of all programs in population, for each objective function.

10: F ← FastNonDominatedSort(Pcurr) ▷ F = (F1,F2, ..) is set of non-dominated

fronts

11: Qgen← Perform crossover and mutation, using tournament selection, and create a

offspring population of size N.

12: Rgen← Pcurr∪Qgen

13: F ← FastNonDominatedSort(Rgen)

14: Pnew← φ

15: i← 1

16: while |Pnew|+ |Fi| ≤ N do

17: CalcCrowdingDist(Fi)

18: Pcurr← Pnew∪Fi

19: i← i+1

20: Sort(Fi,≺) ▷ sort in descending order using crowding-comparison operator.

21: Pnew← Pnew∪Fi[1 : N−|Pnew|]

22: Pcurr← Pnew

23: gen← gen+1

24: F ← FastNonDominatedSort(Pcurr)

25: return First Pareto-front F1

5.4 PROPOSED METHODOLOGY

In this section, we first briefly describe the Standard NSGA-II and introduce the proposed ap-

proach based on this.
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Figure 5.5: NSGA-II Procedure

Standard fitness function in NSGA-II

In the standard NSGA-II approach, the minority class accuracy (Fmstd ) and the majority class

accuracy (FMstd ) are taken as two objective fitness functions (Eq. 5.2 & Eq. 5.3).

Fmstd =
T P

T P+FN
(5.2)

FMstd =
T N

T N +FP
(5.3)

where TN denotes true negative, TP denotes true positive, FN denotes false negative and FP

denotes false positive prediction counts.

In binary classification, we choose a threshold value, generally 0.50. Any classifier output

value greater than this is treated as one, and less than that is 0. In this case, if there are two

classifiers, and for a given sample of the majority class (1), the first gives output 0.90, and the

second gives output 0.60, both predictions will be treated as the majority class (1) and correct.

As the first classifier gives forecast more closure to the expected value, in actuality, the 1st one

is better than the 2nd one. In other words, the lower distance between the expected value and the

predicted value is one inherent property of a good classifier. As the standard objective function

considers only binary values, it does not satisfy this property. The ignorance of distance while

calculating fitness is a drawback of this standard fitness function.
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Proposed fitness function

To overcome the above shortcomings of the standard approach, we introduced a new fitness

function based on the distance among expected and predicted values. For that, let us define

classification distance for any prediction, as Eq. (5.4). We will use this classification distance

in our newly proposed fitness function.

dist =
∥∥valueexpected− valuepredicted

∥∥ (5.4)

Where,

valueexpected : binary value 0 or 1.

valuepredicted : value predicted by classifier.

A GP program represents a mathematical formula that is nothing but a polynomial. This

polynomial consists of variables (input feature variables) and coefficients, which involves addi-

tion, subtraction, multiplication, and integer exponentiation of variables. For any data sample,

the value of the polynomial, represented by the GP program, is taken as the predicted value for

that sample. Depending on generated polynomial, its value may vary between -∞ to +∞. We

subtract this predicted value with the expected value and take the absolute value of this, called

classification-distance. Hence, the above classification distance values will range between 0

to ∞. Therefore, directly using this classification distance in the fitness function has an issue

illustrated in Fig. 5.6.

In this first plotted figure y-axis represent the classification distance for different data

samples. Some of the classification distance values are very high in this plot and supersede

the other classification distance of prediction. Consequently, when summing up these values,

it nullifies the even correctly classified sample’s contribution. Therefore, these values need to

be bounded. To overcome this issue, we take logarithmic classification distance. Since the

value of classification distance is always zero or greater than zero, and the logarithmic value

of any number less than 1 is undefined, we add 1.00 to this classification distance value before

calculating the logarithmic value. We plot this logarithmic distance in the second part of this
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Figure 5.6: Euclidean-distance vs Logarithmic-distance for Different Data-samples

figure. Fig. 5.6 shows that even these larger classification distance contribution is still high,

but it would not nullify the others correctly predicted or near correctly predicted values during

summation.

Now, to resolve the standard approach issue, in this work, we proposed a logarithmic

distance-based MOGP approach, in which we have defined two objective functions as Equ. 5.5

and Equ. 5.6.

Fmprop =
Nmin

∑
i=1

log(1+ |distmini|)
Nmin

(5.5)

FMprop =
Nma j

∑
i=1

log
(
1+

∣∣distma ji

∣∣)
Nma j

(5.6)

Where,

Nmin: Minority samples count in training data.

Nmaj: Majority samples count in training data.

distmaj i: Distance of actual value from predicted value in ith majority class sample.

distmin i: Distance between expected value and predicted value in ith minority class sam-
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ple.

Thus, the Fmprop replace the Fmstd and FMprop replace the FMstd , in the standard MOGP

framework. By introducing this distance factor in our proposed approach, we are targeting the

better-fitted classifiers. After completing the GP run, we recalculate Pareto-front based on the

minority class accuracy and the majority class accuracy. We will measure the hyper-are of the

generated front using the Trapezoidal rule described in the next section.

Trapezoidal rule for the area under generated Pareto-front

The trapezoidal rule (TR) is utilized for calculating the hyper-area under generated Pareto-front

curve. The TR divides the curve into small trapezoids and performs the summation of all the

areas of the small trapezoids to calculate the total area under the curve [102].

Let y = f (x) be continuous function on interval [a, b]. We can divide the interval [a, b]

into n equal sub-intervals, each of width h (Equ. 5.7 and Equ. 5.8).

a = x0 < x1 < x2 < ··< xn = b (5.7)

h =
(b−a)

n
(5.8)

Now, the area under the Pareto-front curve is defined as Eq. 5.9.

∫ b

a
f (x)dx≈ h

2
∗

[
f (x0)+2∗

n−1

∑
i=1

f (x)+ f (xn)

]
(5.9)
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5.5 EXPERIMENTAL SETUP

The proposed approach and the standard approach are implemented in Python. We use Python

3.6.6, installed on Microsoft Windows 10, powered by an Intel Core i7 processor with 32 GB

RAM. In this work, we use StratifiedShuffleSplit. For each benchmark problem, 30 runs of

standard MOGP and proposed MOGP approaches are executed. In every run, the hyper-area of

generated Pareto-front is calculated [104]. We have evaluated the performance on four datasets:

ABL-9-18, YEAST-2, YEAST-1, and WDBC.

For GP population initialization, we used the “ramped half and half” method. This method

generates a wide variety of individuals of various sizes, and shapes [71]. The tree initialization

depth is taken as (2,6). The function set contains +,-, *, /, log, sin and cos functions. The

crossover and mutation probability is set to 0.60 and 0.40, respectively. Population size is set to

512, and max generation is set to 50. We have use tournament selection, with tournament size 2.

For simplicity, sub-tree crossover, sub-tree mutation, and tournament selection with tournament

size two are taken. These GP parameter values are given in Table-5.1.

Table 5.1: MOGP Parameter Setting

Parameter Value

population initialization ramp half and half

population size 512

maximum generation 50

max tree height 6

min tree height 2

function-set +,-, *, /, log, sin and cos

tree terminals feature variables & random constants

mutation 0.20

crossover 0.70
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Table 5.2: Generated Pareto-front Hyper-area by Proposed MOGP Method

Data-set name Unbalanced Front Hyper Area Front Hyper Area

Factor GPprop GPstd

ABLN-9-18 06:94 0.844 ± 0.031 0.651 ± 0.033

Yeast-2 11:89 0.938 ± 0.009 0.833 ± 0.042

Yeast-1 16:84 0.816 ± 0.006 0.804 ± 0.032

WDBC 37:63 0.959 ± 0.008 0.120 ± 0.030

5.6 RESULTS

For each benchmark problems, a total of 30 runs of, standard MOGP, and proposed MOGP

approaches, are executed. In the case of MOO algorithms, the diversification of solutions on

generated Pareto-front and hyper area under the Pareto-front is the key measure of how a given

algorithm is performing. In every run, the hyper-area of generated Pareto-front is calculated.

For calculating hyper area under generated Pareto-front we have used trapezoidal rule [102].

The trapezoidal rule is a technique to approximate the integral of a curve (area), on a given in-

terval [a, b]. The mean and standard deviation of these 30 runs for each benchmark problem is

calculated. In the case of the standard MOGP method [16], for ABL-9-18, YEAST2, YEAST1,

and WDBC datasets, the generated front hyper-area are 0.651, 0.833, 0.804, and 0.120, respec-

tively. Against this, in the case of the proposed logarithmic-distance-based MOGP method, the

generated front for ABL-9-18, YEAST2, YEAST1, and WDBC datasets hyper-area are 0.844,

0.938, 0.816, and 0.959, respectively. Generated Pareto-front for each Unbalanced problem

are plotted in Fig. 5.7, Fig. 5.8, Fig. 5.9, and Fig. 5.10. The left part of the figure shows the

generated front for the proposed MOGP approach, and the right-part of the figure shows the

generated front for the standard MOGP approach.

For all the four benchmark problems, the generated front by the proposed method out-

performs the generated front by the standard MOGP method.Fig. 5.7, Fig. 5.8, Fig. 5.9, and

Fig. 5.10, clearly show the visual of this conclusion. The mean value of generated Pareto-front

is summarized in Tab. 5.2. Thus the proposed logarithmic distance-based MOGP method beats

the standard MOGP method [16] in all considered Unbalanced problems.
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(a) GPprop : Pareto front for ABL-9-18 (b) GPstd : Pareto front for ABL-9-18

Figure 5.7: Generated Pareto-front by MOGP for ABL-9-18

(a) GPprop : Pareto front for YEAST-2 (b) GPstd : Pareto front for YEAST-2

Figure 5.8: Generated Pareto-front by MOGP for YEAST-2
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(a) GPprop : Pareto front for YEAST-1 (b) GPstd : Pareto front for YEAST-1

Figure 5.9: Generated Pareto-front by MOGP for YEAST-1

(a) GPprop : Pareto front for WDBC (b) GPstd : Pareto front for WDBC

Figure 5.10: Generated Pareto-front by MOGP for WDBC

69



5.7 SUMMARY

Many of the real-world classification problems are Unbalanced, and this Unbalanced nature of

data highly influences the performance of standard AI techniques. GP also suffers from a sim-

ilar issue. This research work introduced a logarithmic distance-based multi-objective genetic

programming approach for classifying Unbalanced data. In the case of MOO algorithms, the

diversification of solutions on generated Pareto-front and hyper area under the Pareto-front is a

key measure of how a given algorithm is performing. We plotted the generated Pareto-front and

calculated its hyper-area for each imbalanced problem. Our proposed MOGP method generates

a better Pareto-front, in the form of diversified solutions and higher hyper-area, compared to

the standard MOGP method. Based on our extensive experimentation results, we can conclude

that the proposed logarithmic distance-based MOGP approach outperforms the standard MOGP

method.
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CHAPTER 6

SUMMARY AND CONCLUSIONS
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In this research work, we have briefly summarized the unbalanced data classification, chal-

lenges to tackle unbalanced data classification and review the literature related to unbalanced

classification. Unbalanced data classification got significant attention in the field of data classi-

fication. Most classification algorithms have shown biased results inclined toward the majority

class. The related literature for handling unbalanced data classification is categorized into three

groups: data level, algorithm level, and the ensemble of classifiers. In the data level approach,

the external method focuses on creating a trade-off between the majority and the minority class

samples count. This trade-off is achieved either by over-sampling minority class data points or

under-sampling of majority class data points. Ensemble-based techniques focus on adopting the

technology of multiple classifiers to improve the performance of a single classifier and predict.

We have focused on the internal approach to handle unbalanced data classification issues,

i.e., the algorithm level approach. Genetic programming (GP) is a nature-inspired optimization

algorithm that also suffers from unbalanced data classification. In GP, we have focused on

adapting the new fitness function to reward accurate solutions on both the minority and the

majority classes.

One approach to resolve the unbalanced classification issue is to assign a custom high

weight to the minority class during training. The GP fitness function may introduce the custom

weight assignment for the minority class samples. We assess the impact of the weight factor

on GP’s fitness function for Unbalanced data classification. We performed intensive experi-

mentation on the different weight factors of the minority class in GP’s fitness function. Based

on experimental results, we can conclude that for better handling of Unbalanced classification

problems in a generic manner, we can set the weight value to 0.5. This custom weight assign-

ment for the minority class samples during training generated better solutions, which tackle the

challenges of the Unbalanced data classification problems.

GP with the standard fitness function does not emphasize how close the predicted values

are compared to the expected values, leading to an under-fitted classifier. We focus on the dis-

tance between the predicted and the actual outcomes. We combined the custom weight and

distance factors and proposed a new fitness function to handle unbalanced data classification.

The proposed approach does not require any domain-specific knowledge when applied for un-

balanced classification work. We found that the proposed fitness function gives better results

than the standard GP’s fitness function based on extensive experimentation.
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Evolutionary multi-objective optimization (EMO) is also gaining popularity in research,

facilitating learning with multiple conflicting objectives. EMO achieves this by treating the ob-

jectives independently in the learning procedure using the Pareto Dominance concept in fitness.

Against the MOGP approach, the standard approach requires multiple experimental runs and a

priori objective-based fitness function. Another advantage of multi-objective genetic program-

ming (MOGP) is that it explicitly includes the learning bias into the algorithms. We proposed

a logarithmic distance-based MOGP approach to classifying unbalanced data. The suggested

logarithmic distance-based MOGP approach results have proved its superiority over the tradi-

tional MOGP method, in the form of better Pareto front and higher hyper area under generated

Pareto front.

In this research work, we also compared the performance of proposed approaches with

standard GP and other classification techniques, namely SVM and KNN. The comparison

clearly shows that the proposed strategies either outperform or give comparative results. One

positive aspect of the proposed method is that this outperforms other techniques even without

prepossessing or feature extraction.

Future Work

In this work, our scope is to focus on binary classification only. However, in future work,

we will focus on multi-class imbalanced classification. We found that the GP performs effi-

ciently and very well for binary classification, But applying GP for multi-class classification is

more complicated. There is one majority class in multi-class imbalanced classification while

multiple minority classes (vice-versa is also possible). Therefore against other classification

methods like KNN, SVM, and Decision-Trees (DT), in GP, a careful and appropriate approach

needs to be taken to decide how a GP classifier’s continuous numeric output is mapped to var-

ious classes labels. Thus, in the case of multi-class classification, the most critical aspect is

designing boundary criteria that separate the various classes. This process may be done either

by a priori defining fixed class boundaries for numeric GP classifier’s output or by deciding

class boundaries at run time on a solution-by-solution basis.

Thus, founding class boundaries for separating the various classes may be challenging,
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mainly when the number of classes is high. Another possible approach is to also apply the

proposed binary classification method to multi-class classification problems. In this approach,

the multi-class classification problems may be converted to binary class classification prob-

lems by selecting one-versus-all. Therefore, N binary classifiers will be trained for an N-class

multi-classification problem. However, in the final step, aggregation of these binary classifiers

requires a thorough investigation.

Another future scope of this work includes the extension of the MOGP approach. In this

research work, we considered NSGA-II as a base method. Another strategy may be to use

SPEA-2 as the base method and compare the performance between NSGA-II and SPEA-2.
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