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ABSTRACT

SDN is a communication technology defined by a software program that manages network

traffic routing and configuration. In contrast, the current network architecture controls traffic

by configuring the various network elements remotely. The SDN architecture is centralized in

nature such that data plane and control plane within a networking device are segregated. The

control plane can be thought of as the mind of the network whereas the data plane is adhering to

the controller’s decisions. Examples of SDN controllers include FloodLight, Ryu, Pox, Open-

DayLight, Nox, etc. which are open source and incorporate a set of APIs for building network

applications.

Many researchers have worked on the detection of attacks and the categorizing of net-

work traffic into benign and malicious categories. Existing DDOS attack detection research

is based on threshold-based detection on the count of incomplete connections made, the num-

ber of queries made per user, traffic rate, and the total time of flow duration. Other techniques

include computing the feature tensors for the construction of benign and malicious vectors and

comparing these vectors to a threshold parameter for attack detection. Other techniques include

the use of a Markov model on a network graph, a tensor-based technique for calculating the

entropy of TCP layer attributes, randomness in different traffic features (such as Destination IP

address, Source IP address, Protocol type, TCP flags, Destination Port, Source Port, and Packet

size) and Machine learning (ML) based approaches. The techniques discussed above detect at-

tacks by comparing a specific value as in threshold-based approach, which is impractical in a

large network. Some of them trained the deep learning model on a traditional dataset which

are not created in SDN environment. The detection method employed is computationally time-

consuming, and the experimental setup is not adequately described.

As a result of the identified research gaps, the thesis work proposed variousmachine learning

and deep learning algorithms, which are discussed in the following chapters. The hybrid mod-

els of Support vector classifier with Random Forest, CNN-LSTM, and Stacked Auto-Encoder

(SAE) with Multi-layer Perceptron (MLP) achieved the highest accuracy for DDoS and ARP-

based attack detection. The authors also generated DDoS attack traffic and ARP poisoning
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attack dataset. The annotated traffic dataset is utilized by the machine learning classifiers for

network traffic classification into benign and malicious classes. The network traffic is generated

by collecting the traffic statistic from the various nodes present in the topology. The topologies

are designed by emulating the industrial network scenario using mininet. Various statistics are

collected from the network switches within a monitoring interval of 30 seconds.

In this thesis, we inspected the role of ML classifiers to classify the DDOS attack and benign

traffic. From the total of sixteen features, nine are extracted from the switches (namely packet

count, byte count, duration nsecs, duration secs, source IP, destination IP, txbytes, rxbytes, and

port number) while others are calculated based on the extracted features. The created dataset

is a collection of features that encompass more than 100k traffic instances in the DDoS attack

traffic datasets.

We also investigated the role of machine learning classifiers in classifyingARP-based attack

and benign traffic. The SDN dataset for ARP-based attack has been created. There are total of

seventeen features in the dataset (such as switch-id, Round trip time, Time to live (TTL), Packet

loss, Number of Packet_in messages, sourceMAC address in ethernet, destinationMAC address

in ARP, source IP, destination IP, ping statistics, and operation code, etc.) The created dataset

includes 1,34,000 rows and ML algorithms are trained and tested on the dataset. The dataset is

used by different machine learning algorithms for traffic classification among ARP Poisoning,

Flood attack, and benign traffic.

We also investigated DDOS attack detection using the Deep learning technique. In com-

parison to the work of attack detection using machine learning approaches, the deep learning

technique provided significant performance. The hybrid model of Self-auto-Encoder andMulti-

layer Perceptron (SAE-MLP) achieved the highest classification accuracy of all Deep Learning

models tested. The four different publicly available datasets CICIDS2017, CIC-DoS, and CSE-

CIC-IDS-2018 are also used to evaluate the generated dataset for DDoS attack traffic classifica-

tion. After evaluation, it is found that the proposed Dataset classifies the traffic with the highest

accuracy.

The results obtained in DDOS attack traffic classification using machine learning techniques

were quite promising and provide an accuracy of 98.8%. These results are further improved by

ii



applying deep learning techniques for DDOS attack traffic classification and attain an accuracy

of 99.73%. The hybrid model of CNN-LSTM provides significant classification accuracy of

99.73% among the different ML algorithms used for traffic classification.
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CHAPTER 1

INTRODUCTION

Software-Defined Networking (SDN) is a next-generation network in which the networking el-

ements are programmed. The SDN architecture allows rigid and inflexible network devices to

be programmed. Traditional networking devices are fixed, inflexible, and designed in such a

way that we must write code to test any functionality. If there are multiple devices, each one

must be manually configured. SDN no longer contains any of these requirements. It is a novel

networking paradigm that has redefined the networking domain and proven to be a significant

milestone for network engineers and administrators. In the following section, the concept of

SDN is discussed along with its role in detecting the different attacks.

1.1 Software-Defined Networking

Software-Defined Networking (SDN) has emerged as the revolution in the networking industry.

The SDN design allows traditional network devices to be programmable. Many of the indus-

tries are using SDN in their data centers. There were many R&D networks based on Open-Flow

switches from NEC and Hewlett-Packard but that exists in academic settings only. SDN orig-

inates from the time when it was first time used for telephone line where the architecture of

separating the two planes was first implemented. The Internet Engineering Task Force (IETF)

has taken a step forward in this direction. IETF then worked on developing the network standard

in 2004 known as Forwarding and Control Element Separation (FORCES) soon after which the

platform was used in data centers. There are many more standards from IETF that work for the

same task of separating control and data plane namely Linux Net Link based on IP as Protocol.

The concepts did not prove to be workable because of two reasons, First & foremost, the sepa-

ration of two planes was found to be insecure and attack prone due to the centralized controller.

Secondly, vendors were not in favor of such change as this will create a new level of services,

and thus newAPIs need to be introduced. The Ethane project at Stanford University’s Computer

1
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Figure 1.1: Visualization of the Traditional/Present Network in an architectural diagram.

Science Department pioneered the use of open-source software. In 2008, an OpenFlowAPI was

introduced for the first time. NOX, a network operating system, was created in the same year.

In 2007, independent researchers filed many patent applications outlining SDN applications,

network operating systems, network equipment data processing units, and a method for virtu-

alization. At Stanford, work on OpenFlow proceeded, with testbeds being built to examine the

protocol’s utility. Martin Casado, a researcher at Stanford University, invented SDN. In 2011,

he invented open flow, which is an SDN protocol. SDN can be used for cloud computing ar-

chitecture where till now compute, storage and infrastructure are only available on-demand but

after the technology of SDN & its complementary technology NFV, Network is also available

on demand.

The architecture diagram depicting the traditional network and SDN is shown in the Fig-

ure 1.1, 1.2. The devices in the network are hard to configure as the two planes in the device

i.e., Data Plane and Control Plane are tightly coupled. These two planes are linked in such a way

that they cannot be programmed and are thus rigid. But, Software-Defined Network is based on

the concept of separating the data plane and Control Plane. The Control Plane is understood as

the one responsible for making all the decisions in the network. We can see the control plane

in SDN like the brain in the human body and Data Plane is known for its functionality of just

forwarding the network traffic. SDN architecture is described with three planes as follows:

1. Application Plane: It is the plane that is responsible for the development of the applica-

2
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Figure 1.2: Visualization of the Software-Defined Networking in an architectural diagram.

tions which will be executed by the control Plane [4]. Applications written in languages

such as C, Java, and Python can be deployed at the control plane. If any user wants to

retrieve some information from the control plane, it can be retrieved as a json file or a text

file.

2. Control Plane: This is the plane where the controller exists. It is the brain of all the

switching devices. The controller uses the south-bound interface to communicate with

Data Plane devices. It will execute the code from the application Plane which will affect

all the devices in Data Plane.

3. Data Plane: It is the plane in which all the switching devices reside. They are just the

traffic forwarders and work as inactive terminals and follow the decision made by the

controller.

This architectural change has brought a lot of flexibility to the network. Unlike traditional

networks [4] where the control plane is coupled with the data plane in a device. In SDN, the

isolation of the control plane from the Data Plane makes the network programmable. Due to the

architectural differences in the networking paradigms, the traditional way of forwarding network

packets differs from the SDN. The traditional method of traffic forwarding has been explained

as under:
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1. Traditional switches include a Control Plane and a Data Plane.

2. When the switch is turned on, the MAC Table is empty.

3. MAC ID and Port Number are updated in the MAC Table by the Control Plane. This data

is extracted from the packet.

4. Control Plane continues to build/update the MAC Table.

5. When a packet reaches the destination, the data plane inspects the MAC table. Based on

the matching destination MAC address, the switch routes it to the appropriate port from

the MAC table.

Since SDN is based on network programming, the method of forwarding network traffic is as

follows:

1. The Openflow protocol version is configured in the SDN Controller and Switch.

2. The switch establishes contact with the SDN Controller.

3. The predefined Openflow rule (TABLE MISS ENTRY) is added to the switch’s Flow

table by SDN Controller.

4. The TABLE MISS ENTRY openflow rule fits all packets arriving for the first time and

sends them to the Controller.

5. When the packet is received at the destination, it is matched with TABLE MISS ENTRY

and forwarded to the Controller (PACKET IN Message).

6. The controller accepts the packet and uses it to construct the Switch tables.

7. The controller keeps adding incoming flows to the switch.

8. Flows are used to construct the Switch data path. As a result, when the packet arrives, it

is compared to the Flow table and forwarded to the appropriate port.

Aside from such distinctions between the two networking paradigms, SDN faces many chal-

lenges, including the same security threats as traditional networks. The security attacks can oc-

cur on any of the planes in the SDN architecture. An emulator or simulator is required to carry

out the various experimental tasks in SDN. To perform more accurate experiments, emulators

are used in a variety of experiments.
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1.2 Motivation

In the realm of research, Software Defined Networking (SDN) opens up a plethora of possibili-

ties. Its novel architecture presents several obstacles as well as future directions for communi-

cation enhancement. Security is an important aspect when basic functions are to be delivered

effectively. SDN’s security domain encompasses a several features introduced by its innovative

design and by providing new solutions to old network vulnerabilities. In SDN, the controller

provides programming capabilities to automate the solution provisioning process. However, if

the attacker erroneously propagates false information about the connected host, even the con-

troller will be unable to make the correct judgment. One such attack is theARPPoisoning attack

in SDN, which has received little attention from prior researchers. Another attack of Distributed

Denial of Service (DDoS) has also been a serious threat in SDN, for which different strategies

exist in the traditional networks. But little attention from prior researchers has been done to

SDN. This motivates the author to propose a unique solution for the prevention of ARP Poison-

ing, ARP Flood, and DDOS attacks. The different reasons due to which the research work in the

thesis has been done are mentioned below:

• The latest trends in cloud computing and other fields have created a demand for the cre-

ation of a flexible network, which traditional networks do not provide. SDN, on the other

hand, can provide network on-demand services, which encourages further research into

the concept.

• SDN’s security confronts various issues because it is handled by a centralized controller,

prompting researchers to focus on network security.

• SDN’s performance should not be harmed as a result of security concerns, because it

delivers various advantages.

• SDN security is critical because it will be used by cloud service providers.

1.3 Contribution

In this thesis, we have investigated mainly DDOS, ARP Poisoning, and ARP Flood attack. The

attacks have been detected using Machine Learning Algorithms with promising results. The

following are the research contributions, as well as the publications in which they are mentioned:
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• First and foremost, we conduct a thorough review of the literature on security issues in

SDN. This was explored in Chapter 2 of the book. According to our findings, the majority

of security issues in SDN are due toweaknesses in protocols such asTCP,ARP.We also see

that the majority of the security solutions presented are cryptographic or static binding-

based. These solutions are computationally expensive. Our main goal was to provide

non-cryptographic, lightweight solutions. The proposed solutions are presented in reputed

Conferences and Journals.

• DDOS attack Dataset generated: There are several DDOS attack datasets available, how-

ever, they’ve all been evaluated in traditional network environments. Others created in the

SDN environment have not been given access. The authors created a dataset in the SDN

environment, which is available in the Mendeley repository for public usage in Mendeley

repository 1.

• ARPPoisoning and Flood attack Dataset: There is little attention given by the researchers

towards ARP-based attacks attack. There is very less public available datasets for these

attacks in the SDN environment. The authors generated ARP Poisoning and Flood attack

dataset in the SDN environment, which is also available in the Mendeley repository 2 for

public usage.

• DDOS attack traffic classification: The methods of DDOS attack detection has been in-

vestigated by previous researchers but most of them used either statistical or ML-based

solution. Those solutions seem infeasible in the SDN environment. The proposed re-

search work focuses on providing a simple and efficient way of detecting the attack. The

work makes use of the above generated DDOS attack Dataset and trains an ML algorithm

for traffic classification into Benign and DDOS attack traffic classes respectively.

• ARP Poison and flood attack Traffic Classification: Previous researchers experimented

with ARP Poisoning and Flood attack detection systems. The majority of them relied

on statistical or cryptographic solutions. However, in an SDN environment, the solutions

appear to be infeasible. The proposed research focuses on developing simple and effective

1https://data.mendeley.com/datasets/jxpfjc64kr/1
2https://data.mendeley.com/datasets/yxzh9fbvbj/1
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methods for detecting the attack. The work uses the above-mentionedARP poisoning and

ARP Flood attack dataset to build a machine learning algorithm for traffic classification

into benign and ARP Poisoning and ARP Flood attack traffic classes.

1.4 Thesis Structure

The structure of the thesis is as follows. Chapter2 contains a detailed description of the existing

state-of-the-art research in the area of DDOS attack detection and ARP-based attack detection.

This chapter also identifies SDN plane’s vulnerabilities to various attacks. The proposed work

done for the detection and classification of DDOS attacks is discussed in Chapter III. Chapter

IV describes the proposed detection and classification mechanism scheme for ARP Poison and

ARP Flood attacks in SDN. The chapter also discusses the CPU utilization and time taken for

attack detection to efficiently present the results. Chapter V describes the work on DDoS attack

detection and traffic classification using Deep Learning techniques. Finally, Chapter VI ends

with the conclusion. The author’s national and international publications are also mentioned at

the end.
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CHAPTER 2

LITERATURE SURVEY

This chapter examines the literature about our research objectives. Two security attacks namely

DDoS and ARP-related attacks in SDN are the primary focus of this research. This chapter is

based on existing potential threats, available research, and identified gaps. This analysis will be

useful in the upcoming chapters, which will provide solutions to various threats. In this chapter,

state-of-the-art research available on security attacks in SDN has been discussed. The existing

research in DDoS and ARP Poisoning and Flood attack detection are discussed below:

2.1 Attacks in SDN

The attacks which occur at different SDN planes are outlined in Figure 2.1 which includes DDoS

attack, ARP-Spoofing attack, side-channel attack, and many others. Although SDN provides

many benefits in terms of programmability, flexibility, and simplicity. But it all comes at the

expense of security if not taken care of properly. As the controller is centralized and derives the

whole network it is faced with the issue of security. So, security needs to be taken care of at all

the planes of SDN. The different types of attacks that can occur in SDN are shown in Figure 2.1.

The security attacks which affect the SDN are as follows:

1. Attacks at Application Plane: There can be various attacks that are possible at the appli-

cation plane of SDN. As the application plane uses the applications from a third party,

the applications developed can be malicious. If they are malicious then it can affect the

whole network starting from the controller to the switches and thus entire network can be

attacked [5]. Some of the attacks which can occur at the application plane are:

(a) API Exploitation: In this type of attack theAPIwhich is active between the controller

and application layer is exposed to attack by the attackers. If theAPI is exploited by

the attackers, then the control layer [6] is vulnerable to attacks.
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Figure 2.1: SDNAttack taxonomy depicts the attacks which can occur on different Planes.

(b) Flow-rule insertion attack: Third-party applications at the application layer manip-

ulate the flow tables and insert new rules into the flow table, causing network ma-

nipulation.

2. Attacks at Control Plane: Control Plane executes the applications built for configuring the

data plane. The brain of SDN i.e., the Controller is the one that will decide about traffic

routing and other configurations. But if that is compromised then it is very difficult for

the network to work properly. The various attacks that can occur at Control Plane are:

(a) DoS: This type of attack occurs when the control plane resources are filled with ma-

licious requests in such a way that if any legitimate requests come it cannot answer

the request.

(b) Network Manipulation attack: In this attack, the third party which is programming

the network can create a code in which false routes can be added to the network.

This type of attack results in the entire SDN network failure.

3. Attacks on Control Channel: The control channel between the Control and Data planes

is also vulnerable to attacks. The attacker can take control of the channel and can be ex-
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ploited by the attacker to perform different attacks which include Eavesdropping, MITM,

ARP Poisoning, ARP Flood, etc.

4. Attacks at Data Plane: The data plane is the plane that is responsible for just making the

devices forward the data, making them simple. The separation of forwarding and data

plane makes things simple but also prone to security. So, various attacks can occur in the

Data Plane of SDN which include:

(a) DoS Attack: It is an attack where a legitimate user is denied the services offered.

This attack occurs at the Data Plane when a malicious user is sending a large number

of packets to the switch in such a way that time between subsequent traffic flow

is so less that the switch flow table becomes full and it cannot handle legitimate

traffic [7, 8].

(b) Traffic diversion attack: This type of attack occurs at the data plane where the

switches divert traffic and original routes are not followed.

(c) Side Channel Attack: This type of attack occurs when the malicious user tries to

gather the timing information of the switch to connect to the controller [9]. In this

attack, the attacker can get a hint of whether the flow rule for that flow exists or not.

(d) ARP Poisoning attack: During the host discovery, the ARP table is consulted to

check the IP/MAC pair. There are different ways by which the attacker can disturb

the ARP table information and perform the attack [10]. The attack is performed by

sending the malicious information to the ARP table of the genuine hosts so that all

the traffic destined for the genuine host is sent to the attacker. ARP Poison is one of

the ways to perform MITM attack, Denial of Service attack [11].

(e) ARP Flooding attack is done to flood the ARP table of the host by random host

machine’s MAC addresses. The ARP table is flooded to its capacity by random

hosts which leads to delay in the processing of genuine requests. The attacker can

craft an ARP reply or ARP request packet and perform the ARP Flooding attack.

There are various ways in which an attack can be prevented in a network. A secure

link establishment can help overcome these attacks [12]. The proposed solution for

preventing the attack is efficient as it does not require manual feature engineering

and is so efficient in terms of time and processor load.

10



2.2 State-of-the-Art Research in the DDOS attack

A Denial of Service attack is an attack in which the goal of the attacker is to overflow the

resources of the target host to interrupt the benign host. Existing solutions based on DDoS attack

detection are based on either statistical techniques and others are based on applying machine

learning techniques but they have not provided quite promising results. Some of the DDOS

attack detection techniques are mentioned below:

Buragohain and Medhi [3] presented a statistical approach for the detection of DDOS at-

tacks, by setting a constraint on the number of requests made per user. Features such as traffic

rate and the total time of a flow duration in the switch are analyzed and their upper and lower

limit are recorded for a genuine user. The algorithm analyzes these two features and classifies

the traffic. Lower and upper value is defined after analyzing the usage pattern of a normal user.

The set can be defined as a tuple: {Min_traffic_rate,Traffic_rate_max, time_min, time_max}.

Incoming traffic has to follow the above bounds to be classified as benign traffic otherwise it

will be considered malicious. The attack is prevented by reporting to the controller application

the lower and upper limits. But this solution is a threshold-based solution which is not a scalable

solution.

To address the threshold-based problem discussed above, Kalkan et al. [13] proposed per-

forming Entropy calculation, along with TCP layer attributes such as Protocol type, TCP flags,

Destination port, Source port, Destination IP, Source IP, and Packet size, for detecting the attack.

It creates a pairing of the above-mentioned traffic features and calculates the joint entropy (for

example, destination IPwith TTL) when it is not attacked, then compares it to the same pair after

the attack. If the difference in entropy values between normal and attack traffic is greater than a

set value, the attack is detected, and the mitigation module begins to execute, in which detected

pairs from the previous phase are compared to the same pairs from normal traffic flow, and a

ratio is calculated. If the value of the ratio exceeds the set limit, it begins dropping packets for

that pair until the bandwidth is reduced to acceptable levels. This approach deals with laborious

entropy calculation tasks for a larger network.

To tackle the problem of laborious calculations, a novel solution is provided by Wang et

al. [14] which applies the tensor-based method for DDOS attack detection. Tensors and Eigen-

vectors are collectively known as Eigen tensors. Tensors aremultidimensional arrayswhere their

constituents are defined as a tuple {a1, a2, a3, a4, . . . ,an}. Tensors are utilized with higher-order
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data. The decomposition method is used to lower the dimensionality of the data. Tensors are

represented in the graph in the form of vectors. Tensor multi-mode product is represented as

AM ∗X = λ ∗X (2.1)

HereAis a tensor defined asA∈RI1,I2,I3,...,Im , X is the eigen tensor ofAand λ is the eigenvalue of

A. Data in SDN has been divided into three types namely basic data, parsed data, and instruction

data. All the data can be divided based on their source like flow status information, and security

information. The data-driven tensor framework for network attack detection uses local tensors to

represent data (Source IP, destination IP, source port, destination port, time, number of packets,

number of bytes, protocol, network topology data) in SDN. Through tensor operations data from

heterogeneous sources are fused into a unified form. Flow table data is also represented as local

tensors like matrices which are compressed and later sent to the controller. The tensor data of

SDN is prepared by using three features namely Source IP, Destination IP, and Time. These

features are used for the construction of benign and malicious vectors. A squared prediction

error is computed and compared with the threshold parameter of Q-statistics. If the value of Q-

statistics is greater than the threshold, the attack is detected.The proposed method uses a tensor,

which is a complex solution to perform, and also used threshold value however, it is not made

obvious how to select the threshold.

To deal with the complex solution issue, Researchers used novel Machine learning and Deep

learning as DDoS attack detection techniques. One such solution is provided by Meti et al. [15]

who proposed the use of various Machine-Learning algorithms to detect the DDOS attack in

Software Defined Network (SDN).Various Machine learning algorithms are tested for their per-

formance in the classification task. The dataset used is a TCP traffic set between certain locations

obtained from the experimental results. The detection and prevention take place with the help

of a controller application. The application keeps an Access Control List (ACL) with the help

of which it segregates the TCP traffic set into normal or malicious traffic. This labeled traffic

set is used by the machine learning classifiers. It is found that the SVM algorithm gives better

results than other ML algorithms used. The machine learning algorithm involves manual fea-

ture extraction which is not an efficient method and can be improved by using deep learning

algorithms. To tackle this problem of manual feature extraction in case of large datasets Liu

et al. [16] proposed Deep learning models based on CNN & RNN for traffic classification into
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the attack and benign classes. The dataset used for training and testing includes DARPA-1998,

KDD-99, and others. The attack classes are DoS, R2L, U2R, and Probe. The deep learning

methods of Deep Belief Network (DBN) and Deep Neural Network (DNN) are used for classi-

fication. There are different Data Preprocessing methods used by the author which include:

a) Unfiltered Byte Stream b) Filtered byte Stream c) Unfiltered word embedding d) Filtered

word embedding e) Expanded Filtered word embedding. The first preprocessing method used

raw data whereas the second method used ASCII code converted bytestream. Filtered word

embedding involves the use of the dictionary to filter the payloads, which are then converted

to word embedding vectors. Expanded Filtered word embedding means additional references

are added to the dictionary, and the payloads are filtered and converted to word embedding vec-

tors within the new dictionary. The accuracy was obtained by using Expanded Filtered word

embedding. attained the highest accuracy of 94.11%. This method does not employ SDN spe-

cific dataset and thus cannot achieve a significant accuracy in attack detection. There are many

solutions available for DDoS attack detection using ML technique but most of them utilize tra-

ditional dataset to train the ML algorithm. A significant accuracy can be obtained if the use of

SDN-specific dataset can be done.

Another ML solution is provided by Latah and Toker [17] who investigated and evaluated

an anomaly-based intrusion detection approach using NSL-KDD Dataset. It provide the results

in terms of the following evaluation parameters: a)Accuracy b) Recall c) Precision d) False rate

e) f1-measure f) Execution time g) AUC h) McNemar’s test. Features related to content (i.e.,

F11-F22) are not used from the NSL-KDD dataset instead filtered dataset is used. The classifi-

cation algorithm such as Extreme machine learning, SVM, Naive Bayes, Decision tree, Bagging

Trees, LDA, neural networks, Random forest, AdaBoost, and K-nearest-neighbors are trained

and tested on the dataset. When evaluated against accuracy, precision, AUC, and F1-measure,

and McNemar’s test Decision Tree achieves highest performance. The best results is given by

AdaBoost. Even with the use of hybrid machine learning methods, the suggested approach does

not yield improved results since it uses conventional datasets that were not produced in an SDN

environment.

To resolve the issue of traditional dataset in DDoS attack detection, the effort has been made

in this direction by Niyaz et al. [18]. The author proposed a novel method for DDOS attack de-

tection using a stacked autoencoder (SAE). The different types of traffic collected include TCP,

ICMP, and UDP traffic. Traffic headers are extracted at a regular interval of time. It checks
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whether the packet flow is symmetric or not. If the flow is symmetric, then it is assumed as

a legitimate flow else it is suspicious as an attacker. A total of 68 features is extracted from

the network based on TCP, ICMP, or UDP traffic. For each batch of features, the median, en-

tropy, and packet per-flow are calculated. Having followed the extraction of these features, the

SAE classifies the traffic into benign and seven attack classes with an accuracy of 95.65%. It

also performs two-class classification, assuming seven attack classes as one and then classify-

ing traffic into two benign and attack classes with an accuracy score of 99.82%. The proposed

solution provide significant results but the dataset has not been made available to the research

community.

Another machine learning solution which utilizes SDN-specific dataset for attack detection

on the control plane is performed by Anand et al. [19] who researched on the attacked control

plane. In this paper, the author used nine significant features from OpenFlow traffic to detect

five SDN attacks on the Control Plane. The attacks can slow down the network for genuine

hosts and lead to DoS attacks. The author used six ML algorithms for the detection of attacks on

the controller. This approach relies on the Open Flow traffic at the switches. The features which

are extracted from the network are: 1) Participating capacity of switch 2) Switches participating

in traffic 3) Number of nodes incidental 4) Count Index 5) Timeout Index 6) frequency of Drop

Actions 7) Switch count 8) Packet in Packet Out Ratio 9) Packet in Packet Out Disparity. There

are two types of traffic patterns that are generated:

• Ping all traffic: The traffic is generated by sending ping commands to all the hosts indi-

vidually and then the dump is taken.

• Randomized traffic: With the help of Distributed Internet traffic generator DNS and VoIP

traffic is simulated and its dump is taken.

The controllers which are used in the network are arbitrarily picked from either of these:

(i) Normal, (ii) Attacked Id-1, (iii) Attacked Id-2, and (iv) Attacked Id-3. For evaluating the

significance of each feature plotting a sample of data along with their classes is done. The class

indicates the category of the controller, either attacked or normal. The classifiers which are used

for detection of the attacked controller are (i) Naive Bayes (ii) Adaboost (iii) Multilayer Percep-

tron (iv) Support Vector Machines, (v) Random Forest (vi) Decision Tree. Amongst which ran-

dom forest achieved the highest accuracy of 97% in detecting the compromised controller. The
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proposed solution work on SDN-specific features but does not make the dataset available to the

research community. The method is identical to the one we proposed to detect DDOS attacks,

but we also produced the SDN-specific dataset and made it available to the research community.

Table 2.1: State-of-the-art in DDoS attack in SDN.

1. 2015 Dabbagh et al. Description of SDN architecture and challenges encoun-

tered in dealing with various security attacks including DoS,

DDoS attack, Side channel attack.

2. 2019 Liu et al. Utilized Deep learning models based on CNN & RNN for

traffic classification into the attack and benign classes.

3. 2018 Anand et al. Identified five threat vectors which can be detected by the

machine learning algorithm.

4.

2018 Latah and Toker Uses machine learning based approaches to predict the at-

tack.

5. 2016 Buragohain and Medhi Used various traffic features to detect the DDOS attack and

categorise the traffic.

6. 2015 Wang et al. Used the tensor based method for DDOS attack detection.

Tensors are multidimensional arrays which uses three fea-

tures namely Source IP, Destination IP and Time.

7.

2016 Da Silva et al. Used the concept of machine learning to detect DDoS attack

in which Support-Vector classifier achieved the highest re-

sults.

8.

2018 Kalkan et al. It used the statistical solution to detect DDOS attack in SDN.

The attack is detected by calculating the difference between

the Joint Entropy of attack traffic and normal traffic.

9.

2017 Meti et al. Discussed the use of machine learning techniques such as

Nave Bayes and Support Vector Machines to classify traffic

flows as benign or malicious.

S.No Year Author Main Contribution

Continued on next page
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Table 2.1: State-of-the-art in DDoS attack in SDN. (Continued)

10.

2017 VinayaKumar et al. With the KDD-Cup-99 Dataset, we proposed the use of

CNN-LSTM and other hybrid models for network intrusion.

11.

2016 Niyaz et al. Adeep learningmethod of StackedAuto-Encoder for detect-

ing DDOS attacks has been proposed. There are a total of

68 features extracted from the traffic headers, and the traffic

is classified as normal or attack.

12.

2020 Abdulla et al. A cloud- based SDNArchitecture has been proposed to pre-

vent flow table attack, control plane attack, and Byzantine

attack by the use of certain policies.

S.No Year Author Main Contribution

2.3 State-of-the-Art Research in ARP-Based Attacks

ARP-based attacks that occur in the traditional networks also affect the hosts and other nodes

in SDN. The ARP vulnerabilities were also present in the traditional network but SDN handles

them differently.

Existing solutions are based on either checking the traffic against the stored binding which

is a complex task in the case of a large network, or checking the pattern of traffic which is

time taking task [20], cryptographic solutions is a complex task in terms of processing power

or statistical techniques is also a computationally intensive task. To understand the topology

attacks e taxonomy of topology attacks is shown in Figure 2.2.
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Figure 2.2: Taxonomy of Topology attacks in SDN

The following are some of the most recent State-of-the-Art research in SDN for dealing with

ARP-based attacks:

Conti et al. [21] provided a extensive survey on Man-in-the-middle (MITM) attack. The

survey includes a deep understanding of the attack along with the attacked security principles

of Confidentiality and Integrity. The extent to which a MITM attack can affect the network

traffic transmission is also discussed. Extensive classification of MITM attack is done based on

various parameters like the location of attacker, nature of communication channel, and imper-

sonation technique. The author clearly explained the background idea required to comprehend

topology-based attacks. A work to detect MITM attacks was proposed by Hong et al. [22]. The

author tried to collect the dynamic information of the links in the topology which helps to de-

tect the attack. The information collected includes a data structure that records the name and

number of switches through which a particular flow passed. The data structure generated in-

cludes Source and Destination IP address, Source and Destination MAC address, and sequence

of ports through which the flow passes are used to detect the attack. The detection mechanism

detects the position information of the attacker and breaks the attack by passing the updated flow

rules to the Controller. But this solution seems to be a static solution that will compromise the

programming capability of SDN.

To overcome the above problem, Nam et al. [23] proposed MITM-Resistant ARP which is

a modified version of the existingARP protocol to protect against theARP poison-based MITM

attack. The author proposed to store the original IP/MAC pair in a table for an hour and as long

as the host in the network is present, it updates the original IP/MAC pairs by repeatedly sending

the ARP request. If no ARP reply is received within the threshold time, the particular IP/MAC
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pair is disproved and deleted from the table. So, no attacker can poison the ARP tables as each

host IP/ MAC pairing is preserved. However, there is a scalability issue with this approach in

big networks, making it difficult to keep such a vast list of IP/MAC pairs.

Carnut and Gondim [24] proposed an algorithm for calculating the count of ARP requests

and replies sent over the network. If the count of ARP reply packets is greater than the count of

ARP request packets then the Poison attack is detected. The disadvantage of this method is that

collecting and analyzing the statistics can be a very computationally intensive task.

To overcome the above problem, AbdelSalam et al. [25] detect the ARP Poison attack by

comparing the Source MAC address in the Ethernet frame and ARP header which if different

detects the presence of spoofed ARP request packets in the network. Similarly to detect the

spoofedARP reply packet, the Destination MAC address in the Ethernet frame andARP header

are compared. In the situation of a mobile host, the static method of packet inspection will not

be a solution.

To avoid the above issue, Deng et al. [26] detect the controller attack by ensuring the legiti-

macy of Packet-In messages. So the defense mechanism which has been followed is to maintain

a MAC to port mapping table. The table is comprised of all the host mac addresses and port

numbers of the switch to which they are connected when the topology starts. So whenever a

new packet_in reaches the controller it matches the MAC address in the packet_in with this

table MAC address, if the MAC address exists in the table, then it processes the packet else it

drops it. This approach is vulnerable to internal attacks; if an inside host commits an attack, the

proposed solution will not work.

To solve the above issue Zhang and Qiu [27] detect the MITM attack by calculating the

packet delays of a particular TCP connection. It then compares the mean of the delays of a

particular session with the old referenced values. It was found that when the delay is more than

the predefined delay value, the suspicious outlier is informed to the monitoring module and an

attack is detected. The proposed technique is not scalable and does not address dynamic real-

world situations. Only using delay values to identify attacksmay result in inaccurate predictions.

To address the scalability issue Hoz et al. [28] worked onMITM attack detection by enhanc-

ing the security of the transport layer. According to the author, Transport layer security (TLS) is

based on secure key exchange, an insecure key exchange can lead to Man-in-the-middle attack.

Securing the key exchange process involves securing the certificates use for key exchange. Var-

ious work has been done to detect the untrusted certificate but all of them suffer from some limi-
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tations. It detected untrusted certificates by collecting information from different sources. How-

ever, this technique is constrained by extensive cryptographic operations including challenging

key exchange.

To resolve this problem of complex cryptograhic operations Nehra et al. [20] provided pat-

tern based solution. The attack is detected by sending a maliciousARP request from the attacker.

In normal communication, every ARP request is followed by an ARP reply and IP packets but

in the case ofARP Poison attack andARP Flooding attack there is no consecutive IP packet, but

just the ARP packets that indicate the attack. The detection module whenever finds this pattern,

an ARP Poison attack is detected. This approach for detecting the attack is unique as it is based

on finding a particular traffic pattern as described above, which is an elegant way of detecting

the attack. Previous work tends to use either cryptographic techniques or statistical techniques

which are time-consuming and complex. The proposed approach in our work is similar but

the authors have logged the various features and created a dataset. In the proposed work, the

application of machine learning algorithms has been done to detect the attack which makes it

different from this work.

Wang et al. [29] proposed a novel architecture for detecting MITM attacks. The machine

learning model automatically learns network traffic features by using a CNN for learning the

spatial features, followed by LSTM layers to learn temporal features. The developed model is

trained on Darpa and ISCX-12 dataset to validate the results. So, the paper used the combination

of CNN and LSTM to achieve better results. Because the features are learned automatically,

it has reduced the False Alarm Rate. The proposed method made use of a traditional dataset

that lacked SDN-specific properties, making it incapable of accurately identifying attacks in an

SDN environment. As a result, the thesis generates a dataset specifically for SDNs and makes

it accessible to the research community.
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Table 2.2: State-of-the-art in ARP-Based attacks in SDN.

1. 2016 Conti et al. Provides a comprehensive survey of MITM attacks, includ-

ing a thorough understanding of the attack sources, the spe-

cific security principle being attacked, and the scope of im-

pact.

2. 2010 Nam et al. Proposed MITM resistant ARP by employing a threshold-

based approach which does not allow the attacker to operate

in the network.

3. 2017 Nehra et al. Proposed a pattern matching method for detecting the ARP

Poison and ARP flood attack.

4. 2019 Sebbar et al. Proposed a threshold-based approach using the state of the

node and the duration of connection for detecting theMITM

and traffic redirection attack.

5. 2018 Carnut and Gondim Astatistical method for comparing and calculating the num-

ber of ARP requests and ARP replies has been proposed for

detecting ARP Poison attacks.

6. 2014 Hoz et al. A solution for MITM attack detection was proposed by pro-

viding secure key exchange in the transport layer.

7. 2019 Chou et al. Proposed solution for topology injection, flooding attack

by finding the correlation between the various links of the

topology.

8. 2016 Wang et al. Used CNN and LSTM models on DARPA and ISCX-12

datasets to detect MITM attack.

9. 2018 Zhang and Qiu Used the statistical method ofMITMattack detection by cal-

culating and comparing the packet delays of a TCP connec-

tion with mean of the delays.

S.No

Year Author Main Contribution

Continued on next page
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Table 2.2: State-of-the-art in ARP-Based attacks in SDN. (Continued)

10.

2017 Deng et al. Proposed solution for detecting the controller attack by

checking the legitimacy of Packet_inmessages with the help

of MAC to Port table.

11. 2015 AbdelSalam et al. Proposed method for detectingARP Poison attacks by com-

paring the Source MAC address in an Ethernet frame to the

ARP header.

12. 2015 Hong et al. Proposed solution for MITM attack detection by finding out

the position of attacker and thus updating the flow rules to

deny the packets from attacker to flow in the network.

S.No

Year Author Main Contribution

2.4 Preliminary Work

In this section, we will present preliminary work for DDOS attack detection using a threshold-

based approach. Threshold-based approaches are presented by various authors, but this approach

is different from them as we have emulated [30] the network in SDN.

In Distributed Denial of ServiceAttack (DDOS), the adversary’s aim is to saturate the target

host with so many packets that it lets suffer the legitimate user in using the network services.

Adversary performs the attack in such away that it leads to both data and control plane saturation.

Adversary performs the following attacks:

• Flooding attack: Adversary performs the flooding attack to compromise the bandwidth

and switch memory and thus controller delays access to benign users. To detect such

an attack we have proposed a threshold-based approach which is explained in the next

section.

• TCP-SYN Attack: In this attack, the adversary sends a TCP Syn Packet to the target but

the destination host is yet to send the ACK to the source in the meantime adversary sends

another Syn Packet for connection establishment, so it becomes difficult for the target to

handle the traffic. This is because the controller already allocates all its resources for the
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previous Syn requests and so the controller reaches its saturation to handle the packets

2.4.1 Methodology

We proposed a countermeasure known as Continuous watch. It detects the attack by contin-

uously analyzing the traffic statistics on the switch. Detection and prevention of the attack is

done in two phases. In the first phase, the attack is detected by analyzing the various statistical

parameters listed in Table 2.3. The attack is prevented in the second phase by modifying the

routing concept of the target host in the switch flow table to drop the packets.

Table 2.3: Flow statistics extracted from SDN for DDOS attack detection

S.No Flow statistics Meaning

1 byte_count Count of bytes

2 duration_n_secs flow duration in seconds

3 priority Priority of the flow

4 hard time out set time when flow is removed

5 idle timeout set idle time when flow is removed

6 len length of the message

7 match can be IP, Mac address, Port No.

8 packet-count it is the total count of packets

1) Primary phase of detection: In this phase, a thread is run continuously to monitor the

switch. At regular intervals of time, it collects the flow statistics which include various param-

eters that are mentioned in Tables 2.3 & 2.4. Packet count is used in the work to calculate the

packet rate. The packet rate value is used to check for the attack, whenever the packet rate is

greater than a predefined threshold value of 100, the attack is detected and appropriate action is

taken. Algorithm 1 shows the pseudo-code for the detection of the attack.
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Table 2.4: Port statistics extracted from SDN for DDOS attack detection

S.No Flow statistics Meaning

1 txbytes Bytes sent on a port in network

2 rxbytes Bytes received on a port in network

3 txpackets Packets sent on a port in network

4 rxpackets Packets received on a port in network

5 txerrors Errors during sending the packets

6 rxerrors Errors during receiving of the packets

7 port id Port number

8 datapath switch id

9 duration time during transmission

10 in_port entry port

11 out_port exit port

Algorithm 1 Proposed Algorithm for detection of DDOS attack in SDN

Input: Traffic statistics at switches

Output: Attack detected successfully

Initialisation:packetratelimit=100

1: For each flow collect the packet count and textittx_ & rx_ byte statistics

2: for i = packet1 to packet_n do

3: textitpacketrate=packet_count/duration

4: textitBandwidth=((tx_bytes+rx_bytes)*8)/1024

5: if (packetrate(i) ≥ packetratelimit) then
6: Attack detected

7: end if

8: end for

9: return Flow with SourceIP , DestinationIP

Secondly, we also compute the bandwidth for every 30 seconds. Bandwidth is computed for

all the ports by specifying the OFPP_ANY to the OFPFlowStatsRequest [31], [32] to measure

the bandwidth of all the ports. We can specify the specific port number if we want to measure

it from a particular port. Bandwidth is also found to be increasing high when the attack takes

place, but once the prevention technique is used then bandwidth will be reduced.
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Algorithm 2 Proposed Algorithm for prevention of DDOS attack in SDN

Input: Flow for the Packet Rate, Bandwidth

Output: Deleted BlockedList

1: For the flow which has the identified packet rate and bandwidth

2: for i = flow1 to flown do

3: append the corresponding source IP of that flow into blocked list which is a list of IPs

who have exceeded the threshold packet rate.

4: if (SourceIP (i)== BlockedList(i) then
5: Modify the action of that flow to drop the packets from source IP identified.

6: end if

7: end for

8: return Deleted BlockedList

Secondary phase & Countermeasures

In this phase, Attack prevention takes place. The attack which is detected during the primary

phase is prevented by changing the forwarding logic of the switches by modifying the flow rule

in the flow table to drop the packets by using OFPFlowMod message instead of forwarding.

Algorithm 2 shows, the pseudo-code for the prevention of the attack.

2.4.2 Experimental Work and Results

We used Mininet [33] as an emulator to analyze the network traffic, the attacks, and their coun-

termeasures along with Ryu [34] as a network controller. The controller is written entirely in

python and we have deployed our application logic as an application on Ryu.

Various simulation parameters are shown in Table 4.3. To analyze the results we have plotted

the graphs of certain parameters without prevention technique and with prevention technique

which will help us understand the scenario of attack in a better way.

Figure 2.3: Impact of attack on the Packet count Parameter
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Table 2.5: Simulation Environment to check the proposed approach of DDOS attack detection.

S.No Parameters Value

1 Host OS Windows10

2 Guest OS Ubuntu16.04

3 VirtualBox 5.1.26

4 Emulator Mininet

5 Controller Ryu

6 # Controller 1

7 # Switches 9

8 # Hosts 12

9 Protocol Used OpenFlow

10 Graphical package MiniEdit

11 Traffic Generation tool Iperf, Curl, Ping

12 Controller Port Number 6653

13 Bandwidth 100 kbps

14 Simulation Time 300 seconds

15 Packet rate threshold used 100 packet per second

16 Statistics collection interval 30 seconds

17 Bandwidth plot interval 30 seconds

Figure 2.3 shows the effect of the attack on the number of packets. As can be seen from the

Figure that when there is no attack the number of packets over the network is in the range of

(1000-12000) packets when measured after every 30 seconds. Similarly, when a malicious node

attacks the target host (H1) the packet count shows an abrupt increase and reaches the range of

(18000-200000) packets. It is a strong indication of the attack. The increase in packet count is

due to the malicious nodes(H2, H3, H4) attacking the target host (H1) at 100 pps by each of the

malicious nodes. Host 2 will send on port 2, so there will be 3000 packets every 30 seconds

and on port 3 there will be 6000 packets every 30 seconds. So three malicious nodes attack the

target host and packet count increases in the interval of 9000 packets every 30 seconds and a

total of 18000 as twice count for request and response.

For preventing the attack we have calculated the packet rate, which is defined by the number

of packets sent per second. To check the attack, packet rate threshold value of ’100’ is used and

if the packet rate at a particular switch crosses the threshold rate then the attack is detected and

the control goes to the prevention module. The value of ’100’ for packet rate is used because

when the normal traffic flows the packet rate values lie between 5-8. But during attack, only

the packet rate lies above 70 so we have chosen a value ’100’ which occurs only when there is
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an attack. Also, Packetcount of ’100’ can be from a legitimate user but a packet rate of ’100’

cannot be from a legitimate user as confirmed experimentally.

The prevention module alters the host’s routing concept to prevent further forwarding of

packets by modifying the action part of the flow table to decline packets instead of forward,

preventing the malicious source IP from sending packets again.

Figure 2.4: Bandwidth during Normal vs Attack traffic.

Figure 2.4 depicts the bandwidth graph plotted between normal and attacked scenario. In

the graph, we can infer that bandwidth of the network during normal traffic ranges between

(100-300 kbps) which shoots up during the attack in the range of (1600-3000 kbps) which is an

indication of an attack. Port1 in yellow is the port that is connected to host1 which is the target

host and it is the sum of bandwidth at host 2, host 3, and host 4 who have attacked the target

host at 100 pps.
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Figure 2.5: Traffic Bandwidth in attacked vs after countermeasure applied

Figure 2.5 depicts the bandwidth of the network when countermeasure is applied which stays

in the range of (400-600 kbps). It is because of the packet rate threshold which has been set to

100 packets per second, which when the attacker (H2, H3, H4) continues sending packets, they
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are dropped and port1 drop the packets and its bandwidth falls to zero. There is packet sending

still done by Host 2,3,4 but Host 1 drop the packets can be seen from Figure 5 that port2, 3, 4

have not fall to zero.

Figure 2.6: Packet Rate during attack vs after prevention applied.

Figure 2.6 depicts the graph between packet rate before and after the countermeasure is

applied. When the malicious hosts(H2, H3, H4) attack the target host (H1) attacking at 100

pps the attack rate shoots up in the range of (600-744) but after applying the countermeasure

whenever the packet rate goes above 100 the packets are dropped which is shown in the Figure

that when the packet rate becomes 106 the switch started dropping packets and so packet rate

comes down.

2.5 Research Gap and Problem Statement

SDN security is critical since the centralized architecture is vulnerable to network threats that

can bring the entire network down. Aside from typical threats, there are new attacks that can

occur in SDN that must also be addressed. The problem of identification of attacks in SDN

using machine learning techniques has been investigated in the thesis. There has been a lot of

research done in the past by numerous researchers, however, the majority of them have flaws.

The following are some of the research gaps that have been identified:

• Previous research work [15]detect the attack by using a threshold-based approach, which

is not feasible in a large network,

• Most of the work used NSL-KDD Dataset [25] in detecting the attack, which is not an

SDN-specific dataset.
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• Most of the work [35] does not provide details about the features used for detecting the

attack.

• Most of the work just explained the architecture [36] without explaining the details of the

experimental work.

• It also does not provide any experimental results to validate the theory.

2.6 Objective

The thesis aims to work on DDOS and ARP-based attacks which occurs in SDN. For detection

of these attacks, the datasets have also been generated. Machine learning algorithms are trained

on the generated datasets and attack detection and traffic classification into benign and attack

classes have been attained. To achieve these goals, we’ve taken the following steps:

• Generated SDN datasets for attack detection on the Mininet emulator, which will include

extracted traffic features to distinguish attack traffic from genuine traffic.

• Designed an efficient algorithm for detecting network attacks in SDN.

• Performed Comparative analysis of variants of proposed attack detection classifier in

terms of classification accuracy, training time, confusion matrix, and F1-score.

• Developed an algorithm for mitigation and prevention of security attacks in SDN and pro-

vide a comparative analysis of the proposed attack prevention algorithm with a traditional

prevention algorithm.

28



CHAPTER 3

AUTOMATED DDOSATTACK DETECTION IN SDN

The previous chapter discussed existing research against different security attacks. The tech-

niques are primarily based on calculating the entropy [37], calculating statistical parame-

ters [38] such as standard means of deviation, static IP/MAC mapping, and cryptographic

computations to detect the attack. This work provides a one-of-a-kind solution for DDoS at-

tack detection, that includes the generation of a DDoS attack dataset. Attack detection has

been performed using the Machine learning algorithm on the dataset which provides significant

traffic classification results [39].

3.1 Introduction

Software-Defined Networking (SDN) is a communication design that is defined by a software

program. It is a centralized architecture where the network is controlled by Controller. Examples

of SDN controllers include FloodLight, Ryu [34], Pox, OpenDayLight [40], Nox, etc. which

are open source and incorporate a set of APIs for building network applications.

But the benefits offered by SDN come at an expense of security. The centralized architecture

is prone to security attacks different planes [41,42] of SDN architecture. The proposed research

focuses on the classification of network traffic into benign and DDoS attack class by applying

MLAlgorithm [43].

In the DDoS attack [44, 45] presented in Figure 4.2, the attacker’s goal is to fill up the re-

sources of the target host to disrupt the benign host. DDoS attacks in SDN can occur at different

architectural planes. So far, several authors [2,18,46–49] have worked for DDoS attack detec-

tion in SDN. But these works mostly used unrealistic topologies. Others have used traditional

datasets for detecting the attack on SDN. However, some have used the SDN testbed but have

not made the data public to validate the approach. The cause for the inapplicability of tradi-

tional methods in SDN is the architectural difference between the two networking paradigms.
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Figure 3.1: A scenario of DDoS attack by flooding the target resources.

This motivates the author to work on the SDN testbed and create the SDN traffic Dataset.

3.1.1 State-of-the-art VS Proposed Method

At present, the work on DDoS attack detection in SDN is already addressed. But the selection of

the significant features which play an important role in attack detection is done in the proposed

method. Besides, a hybrid method of Random-forest with Support-vector-classifier is used for

the classification task in the proposed work. Several significant works for DDoS detection have

been done using Machine learning and deep learning [50]. However, the proposed work differs

significantly from them in the following ways.

Francesco Palmieri [46], latah and Toker [51], Wang et al. [14] have worked on DDoS at-

tack detection but did not use the SDN emulated traffic dataset. Indeed they used a publicly

available dataset that has been generated for traditional network architecture and has different

set of features that is not applicable in SDN environment. Da Silva et al. [2], Buragohain and

Medhi [3] have worked on the DDoS attack detection using machine learning approaches where

they have considered just two features which can not justify the accuracy achieved whereas the

proposed method used twenty-three features.

Niyaz et al. [18] worked on the DDoS attack detection using the Deep Learning technique

but the paper has a few limitations in terms of processing capabilities as it has considered 67

features. We have to optimize the number of features to make the system efficient. The proposed

work has used 23 features and attained higher accuracy. Santos et al. [47] have attempted to work

on their dataset but they do not follow the real scenario as the dataset is prepared by labeling

the traffic serially which means normal traffic followed by attack traffic. But in real-time, the
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attack happens in between the normal traffic and the created dataset reflects the same scenario.

Myint et al. [48], Cui et al. [49] have claimed to work on their datasets but have not made

them public for verification but in our work, we have shown the results tested on our dataset

and made it public as well. None of the research works cited above used the hybrid model of

SVC-RF which is used in the proposed approach and attained significant results.

The proposed approach in this work is composed of two modules. The first module collects

the flow and port statistics to create the dataset and the secondmodule applies amachine-learning

algorithm to classify the traffic. The contribution of the work can be summarized as under:

• Creation of SDN dataset using mininet emulator: In the work, the authors have created

the SDN traffic dataset [52] using mininet emulator [33]. The datasets which are already

available like NSL-KDD, KDD-cup99, and ISCX are created for the traditional network

and only contain a subset of features available in SDN. So, the author has created the SDN

dataset generated in the mininet emulator. The dataset has been shared in the Mendeley

data repository given in footer 1.

• Classification of traffic into benign and malicious using Machine Learning: After we

create the SDN traffic dataset, different Machine Learning algorithms [53] are applied to

classify the traffic into benign and malicious classes. This trained model that classifies

the traffic, can also be used in real-time. As the dataset is created on the SDN emulator,

the algorithm which produces the highest classification accuracy will also produce similar

results in the real-time scenario.

• Detection of the attack on the host: To detect the attack on hosts, the effective features in

the dataset are analyzed by the machine learning model and detect the type of traffic. The

rate of normal and attack traffic is kept similar which made the problem of classification

more difficult. But it also proves the validity of the features analyzed.

3.2 Dataset

In this section, the significant features generated during the dataset creation along with the Sys-

tem model and proposed methodology are discussed. The dataset generated during the first

phase is used in the second phase for traffic classification.

1https://data.mendeley.com/datasets/jxpfjc64kr/1
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Figure 3.2: Topology utilized for dataset creation.

3.2.1 Dataset Creation

Dataset creation is done by extending the controller with a python application which is created

with the help of RYU API [54]. It monitors the switches present in the topology and collects

the various flow and port statistics at a regular monitoring interval. It also writes the collected

statistics into a CSV file. Sample topologies used is shown in Figure 3.2 which shows hosts

connected with different benign and malicious hosts in the topology.

As the dataset is emulated, it does not contain any missing data. The total number of records

is 1,04,345, and each record consist of 23 features, and some are shown in Table 3.1.

Table 3.1: Features Used in the Dataset

S.No Features Used S.No Features Used

1 Packet Count 9 Source IP.

2 Byte count. 10 Destination IP.

3 Total number of flows in a switch. 11 Number of Packet_in messages.

4 Packet Count per-flow. 12 Packet Rate.

5 Byte Count per-flow. 13 Port number.

6 Duration_n_secs. 14 txbytes.

7 Duration_ secs. 15 rxbytes.

8 Total_duration. 16 Port bandwidth.

In the dataset, the time field represents the date and time at which the data is recorded, switch

represents the datapath-id in the topology, src represents the Source IPAddress, DST represents

the Destination IP Address, Pktcount represents the count of packets sent during a flow, byte

count represents the count of bytes sent during a flow, duration represents the time during which

the flow remains in the switch, dur_nsec represents the duration in nanoseconds during which

the flow remains in switch and total duration is the total sum of dur_sec and dur_nsec, Packet_in
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represents the count of Packet_in messages conveyed to the controller, port_no represents the

port number of the switch to which the requests are sent, tx_bytes represent the count of bytes

sent on a specified switch port, rx_bytes represent the number of bytes transferred to a switch

port, tx_kbps represent the kilobytes transferred per second, rx_kbps represent the kilobytes

received per second and tot_kbps represent the bandwidth of a switch port. Dataset has been

freely available for the research community 2

3.2.2 Dataset Annotation

The annotation of the dataset is done automatically by applying some code logic. The coding is

done in such a way that when benign traffic runs, the label column of the dataset is set as ”0”

and for malicious traffic, label is set to ”1”. After annotation of the data, we apply a particular

ML algorithm to classify the traffic. The two classes of traffic are a) Benign b) Malicious which

correspond to 0, 1 respectively. The total count of traffic instances present in the dataset is

depicted in Table 3.2.

3.2.3 Feature Description

This section discusses the significant features present in the dataset and utilized by a machine-

learning algorithm to classify the traffic effectively. The various features are critically analyzed

and explained below.

• Average Packet count per flow (APPF): In SDN, an attacker take advantage of the fact that

source IP is used as a distinguishing feature for identifying a flow. So, the attacker utilized

spoofed IP addresses and flood the flow table with different IP addresses. The attacker

only aims to flood the flow table and not send data packets. So, the average packet count

per flow is a significant feature. APPF decreases in case of attack and increases in case of

the benign user as the number of packets sent in attack is less. APPF is the fraction where

the numerator is the packet count during a flow and the denominator is the count of flow

entries present in the switch at a particular time. APPF can be expressed as under:

APPF = Σi=n
i=1 ci/f (3.1)

Here, ci is the Packet count of flowi (which is the total packet sent during the flow i) and

2https://data.mendeley.com/datasets/jxpfjc64kr/1
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i ranges from flowi to flown. This feature can be used to detect DDoS attack.

• Average Byte count per flow (ABPF): In SDN, the average byte count per flow can also

be used to indicate the attack. This parameter is calculated from one of the flow statistics

i.e., byte count. It is calculated in the same way as for APPF. ABPF also decreases in

case of attack. ABPF is the fraction where the numerator is the byte count during a flow

and the denominator is the number of flow entries present in the switch. ABPF can be

expressed as below:

ABPF = Σi=n
i=1bi/f (3.2)

Here, b is the total bytes during a flow. This feature can also be used to detect DDoS

attack.

• Total number of flows in a switch: Aflow is defined as the transmission of packets between

sending and receiving host in the network. A flow table is maintained at the switch that

stores all the flow details for the topology. The total number of flow can be expressed as

below:

f = length(flowtable) (3.3)

Here, flow_table represents the table maintained at the switch whose length gives the

number of flow description at a particular instant of time. In case of attack, the switch

connected to the target host is found to contain the maximum number of flow entries [55].

The periodic monitoring of the hosts shows that the target switch has a maximum number

of flow entries. So, the number of flow entries is an important feature to consider for

classifying the traffic as benign or malicious.

• Protocol: Protocol defines the protocol associated with the traffic flow. Protocol can help

identify the traffic protocol associated with the malicious traffic. Any deviation from the

normal traffic protocol can help detect the attack.

• Duration: Duration depicts the duration of flow entry in the flow table of a switch. Du-

ration is computed by the sum of d and (d_nano). The total duration during which the

flow remains in the switch’s flow table is a sum of duration_sec (d_nano) converted into

nanoseconds and duration_sec (d). Total duration in nanoseconds can be expressed as
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below:

Total_duration = ((d ∗ 109) + (d_nano)) (3.4)

Attack traffic remains for larger duration as compared to benign traffic. So, the duration

during which a flow remains active in the switch plays an important factor in deciding the

malicious host. Duration has a high value in case of attack as compared to benign traffic.

• Number of Packet_in messages: Packet_in messages are the messages processed by the

Controller and sent by hosts when they lack a flow entry in the flow table and are thus un-

sure what to do with the received packet In response, the controller sends the Packet_Out

message. When the attackers used spoofed IP addresses, a large number of Packet_in

messages are reported to the controller. So, the count of Packet_in message is an indica-

tor of an attack. When the Packet_in message is created by the switch it is known as an

event. Event handlers are associated with every event generated. So, to obtain the num-

ber of Packet_in messages generated, counter is updated in the Packet_in message event

handler routine. Count of Packet_in messages increases in case of an attack. So, it can

be used as a significant feature for attack detection. The threshold above 1970 in case of

UDP traffic, 4300 in case of TCP traffic, and above 3000 in case of ICMP traffic is con-

sidered as attack traffic in the dataset. When the number of Packet_in messages increases,

there are generally a large amounts of packets sent by the attacker to the destination. So,

the other features like average packet per flow and packet rate also play an important role

while labeling the host as attacker or normal.

• Packet rate: Packet rate is defined as the number of packets sent per second. Benign and

malicious traffic, both send traffic at the rate of 450 packets per second but as the attacker

used spoofed IP addresses, decreases in the packet rate is reported. It can be expressed as

below:

Packet_Rate = (pt+1 − pt)/i (3.5)

where pt+1 is the number of packets sent in a flow at time t+1 and pt is the number of

packets sent at time t and i is the monitoring interval. As the packet count is a cumula-

tive number, so packet rate is calculated by subtracting the consecutive packet count and

dividing by i.

• Port Bandwidth: Port bandwidth is defined as the sum of received bytes (r) and transmitted
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bytes (t). The port statistics are collected from the switch’s port at a regular interval. As the

attacker sends more requests and less data, so the Port bandwidth is less which indicates

the attack. Port bandwidth is expressed as below:

Bandwidth = (t ∗ 8)/1000 + (r ∗ 8)/1000 (3.6)

Here t and r are the extracted Port statistics from the switch. The Port bandwidth is cal-

culated by using them and specified in kbps.

3.2.4 System Model

In this section, we are going to describe the SDN architecture where the network is modeled

as a directed graph G ∈ (V, E), where V is the set of nodes and E is the set of connections that

connects various nodes including hosts, switches, and controller in the network.

Controller

 S1  S2  S3  S4

User 1

..........

User 2 User 3 User n
.......

Count of Packet_in messages,  if exceeds 

the set threshold results in attack.

 Sn

Packet count at switch, if

exceed the set threshold

results in attack.

User 4

Flow entries present in the

switch cannot be greater than

the  capacity of flow table.

Figure 3.3: System Model Satisfying the Constraints

The problem statement is described by the following attributes:

• Input Data- The input dataset contains seven tuples: {C, S, t, θ, β, ζ , δ} where C is the

constraint set that is to be satisfied by the network. S is the set of switches {S1, S2, S3,…,

Sn}, t is the time during which statistics are collected, θ& β are the thresholds used, above

which the attack is said to take place, ζ is the maximum capacity of emulator and δ is the

change in the value of various statistics collected, whose value can be analyzed to detect

the attack.
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• Constraint set (C)- is specified as four tuples {C1, C2, C3, C4} where each constraint can

be explained as under:

– C1 : 0 <= P < θ

Constraint C1 states that the Packet count at each switch should not exceed the

threshold value θ. If the packet count (P) exceeds a set threshold value then an

attack is said to take place.

– C2 : 0 <= Pin < β

Constraint C2 states that the count of Packet_In messages (Pin) to the controller

should be greater than zero and less than a threshold value β. If the number of

Packet_In messages exceeds the threshold limit set then the attack is said to take

place.

– C3 : D ∈ 0,1

Constraint C3 states that decision variable D can take only two values 0, 1 which

correspond to benign and malicious traffic respectively.

– C4 : Σn
i=1F ≤ ζ

Constraint C4 states that the number of flow entries (F) present in the switch should

not be more than the processing capacity of the emulator(ζ).

The System model can be explained in Figure 3.3. It depicts that the specified con-

straints are satisfied by different hosts. The various threshold values in the con-

straints, model the traffic behavior. If the traffic remains within the threshold value,

the traffic is recognized as normal and if it exceeds the threshold value the traffic

is recognized as malicious. We have generated the normal and attack traffic at a

fixed rate of 450 packets per second. So the threshold of Packet count above this

value can be set to check the data behavior. Similarly, in the case of attack traffic

the count of the Packet_in messages exceeds the count for the normal traffic. In

an attack scenario, a large number of requests are made from spoofed IP addresses

which results in a larger number of Packet_in requests to the controller. Also, D is a

decision variable that takes either of the two values of 0 or 1. All these constraints

are set from the analysis of the dataset.
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3.3 Proposed Methodology

This section discusses our proposed methodology. The proposed algorithm 3 shows the step-

by-step process of dataset creation. The algorithm collects the flow statistics from the switches

present in the topology. For every event there is an event request and reply handler, so during

the monitoring interval flow statistics are retrieved by calling OFPFlowStatsRequest method.

In reply the event reply handler i.e., OFPFlowStatsReply method is evoked which returns the

flow statistics. Similarly, Port statistics are retrieved by calling OFPPortStatsRequest method.

These statistics are written to the CSV file during the monitoring interval for all the topologies

and the dataset is created.

Algorithm 3 Proposed Algorithm for creation of DDoS attack Dataset in SDN

Input: Traffic statistics at switches. Flow and Port statistics are extracted from the switches at

a regular interval of 30 seconds.

Output: SDN traffic Dataset after appending all the flow and port statistics.

Initialization:Normal traffic Packet per flow, Attack traffic Packet per flow, Packet_in count,

flows count, Packet Rate.

1: For each flow, collect the flow and port statistics.

2: for i = flow1 to flown do

3: Collect all the flow and port statistics from the switches into a file to create the dataset.

4: To collect the flow statistics OFPFlowStatsRequest method is invoked and the required

flow statistics are invoked from the switch at a regular interval.

5: To collect the port statistics OFPPortStatsRequest method is invoked and the required

port statistics are invoked from the switch at a regular interval.

6: Annotate the Dataset with Attack traffic as 1.

7: Annotate the Dataset with Normal traffic as 0.

8: end for

9: return Annotated Dataset.

Figure 3.4 shows the process of dataset creation. Here, stepwise phases of dataset creation

are shown. After creating and annotating the dataset, machine learning algorithm are trained

and tested on the dataset. Before splitting the dataset, various pre-processing techniques have

been applied to dataset. Dataset is explored by plotting various univariate and bivariate plots to

understand the relationship between the independent and dependent variables. Pre-processing

techniques applied include handling missing values, null value removal, categorical value en-

coding, etc.
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Table 3.2: Number of instances in the dataset

Traffic class Number of instances

Benign 63561

Malicious 40784

TCP Traffic 29436

UDP Traffic 33588

ICMP Traffic 41321

Table 3.3: Traffic category of each traffic in-

stance.

Traffic class Benign Malicious

ICMP 24957 16364

TCP 18897 10539

UDP 22772 10816
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Figure 3.4: Block diagram- Dataset Creation

Feature selection is a key step to choose the important features and get rid of the unimportant

ones, which may help the dataset become more precise. We used the correlation matrix as

one of the feature selection techniques and eliminated characteristics that did not significantly

contribute to the dataset. These attributes, which include Total time, Byte per flow, and Date,

do not directly influence the forecast of traffic type. The final variables must be encoded once

the feature selection procedure has been applied.

Various categorical features are present in the dataset such as Source_IP, Destination_IP that

needs to be encoded. Other features require normalization in which very high valued features

and low valued features are scaled to values between (0,1). Before preprocessing, the original

dataset comprised 23 columns and 1,04,345 rows. But after preprocessing, the dataset comprised

67 columns due to the addition of dummy variable encoding for categorical variables present in

the dataset.

The train and test split are done in the ratio of 80:20 and the distribution of the normal and

attack traffic present in the dataset is shown in Table 3.2.

3.3.1 Machine Learning Techniques Used

Machine Learning algorithms can learn from the features in a dataset. It is known as training the

machine learning model. The trained model can classify the traffic into benign and malicious
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classes. The trained model can also be deployed in real-time to classify the traffic. Some models

which perform well in classification tasks as per the literature are mentioned below:

• Logistic Regression [56]: A classification algorithm in Machine Learning which uses a

sigmoid function to classify the input into one of the possible classes. It uses a character-

istic equation of the form:

P (X) = eb0+b1∗x/1 + eb0+b1∗x (3.7)

Here P(X) is the probability of X which is the output, b0 is bias and b1 is the coefficient

associated with the input value (x). The classification label is set to 0 when the probability

of an event is less than a given threshold value else it is assigned class label 1. The algo-

rithm is mostly used in the cybersecurity domain for classifying the cases as fraudulent

or not. Similarly, the author has tried to predict the likelihood of traffic as Benign or ma-

licious. Besides, the algorithm can also be used for multinomial classification problems.

This algorithm produces 83.6% accuracy with the proposed dataset. It is mostly used in

the literature, so we also tested the model on our dataset.

• Support Vector Classifier [57]: The algorithm can be used for both regression and clas-

sification tasks. But mostly it works well for classification tasks. Various data points are

visualized and a decision boundary or plane segregates the class of data points apart. The

decision plane can be a straight line or a higher dimensional plane, depending on the num-

ber of data points. The points nearest to the decision plane are known as support vectors

which help to calculate the margin of the decision plane. The decision plane with large

margin is better than a small margin. The optimal decision plane is a generalized decision

plane and best segregates the different classes. The decision to apply it to our problem

is because it works well for classification problems with a large number of features as in

our case. But it does not give satisfactory results with our dataset as the features present

in our dataset are highly correlated and finding a decision boundary with such features is

not possible. This model, when we train on our dataset yields an accuracy of 85.8%.

• K-Nearest Neighbour [58]: It is an unsupervised learning algorithm that works on the

principle that similar things exist together. The algorithm works by predicting the label

of the new test data by calculating the distance between the test data and other neighbor
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training samples. The distance is calculated by using the equation mentioned below:

distancea,b =
√
(x2 − x1)2 + (y2 − b1)2 (3.8)

This distance is known as Euclidean distance and (x1, y1) & (x2, y2) are coordinates of

two points in space. Other distance measures can also be used like Manhattan Distance,

Minkowski distance. When the distance between different neighbors and test data point

is found to be minimum, the particular neighbor is selected and its label is assigned to the

test sample. This algorithm, when trained with our dataset attains an accuracy score of

95.22%. This algorithm produces significant results as it uses the statistical parameter of

distance measurement to compute the similarity.

• Random Forest [59]: In this method, different decision trees are trained on the dataset.

Tree-1 Tree-2 Tree-n

......

Tree Instances

Figure 3.5: Block Diagram depicting Random Forest Algorithm

It outputs a class that is the majority vote of the various decision trees. A large number of

decision trees are used for final classification results.

A large number of decision trees participate in decision making, the method is also known

as an ensemble of decision trees which is shown in Figure 3.5. It shows that the final

output will be based on majority votes of the participating decision trees. It is well suited

for a dataset that has a large number of features. This algorithm when trained on our

dataset yields an accuracy of 97.2%. Random forest provides accurate predictions as

random features are selected during training for each decision tree. Our dataset has a

large number of features which increases from 23 to 67 after preprocessing phase and

random forest produces significant results with a large number of features. We also apply
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k-fold cross validation during splitting to reject overfitting.

• Ensemble Classifier [60]: This classifier considers several models for the task of classifi-

cation.

Training 

Dataset

CM1

CM2

CMn

...

O1

O2

O3

Voting

Voting

Voting

Final Output

Test Data

Classification model Individual Output

....

Figure 3.6: Block Diagram depicting Ensemble classifier

In this method, the votes of different classifiers are considered as shown in Figure 3.6. It

shows that different classificationmodels (CM1,CM2,...CMn) were considered and trained

on the dataset but the final output is decided based on the maximum votes for a class. For

eg: if there are three classifiers A, B, and C. A and B predicts the class label as 1 and C

predicts class label as 0. The final decision will go with majority votes i.e class 1. The

various classifiers include Random Forest, Decision Tree, KNN and SVC. This method

attains an accuracy of 97.5% as shown in Figure 3.13. This model produces significant

results on our dataset as the classification error is reduced by averaging the error of the

different classifiers used.

• Artificial Neural Network(ANN): It is a network of neurons that duplicates how humans

think and reason. It consists of many layers a) Input Layer which consists of a set of input

neurons. b) Output layer which consists of a set of classes to which input neurons are

mapped. c) Hidden layer consists of computations for fine-tuning the weights in the input

layer to minimize the error. The inputs from the input layer are passed to the hidden layer.

Each connection is assigned weights and each weight gets multiplied with input neurons

and bias is added to them as per the equation below:

I = Σi=n
i=1wi ∗ xi + b (3.9)
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The value of I is passed on to the activation function to select the neuron for feature extrac-

tion. The same process follows for other hidden layers and the output layer gives the class

probability as output. This method achieved a significant accuracy of 98.2% as shown in

Figure 3.13. But this is a black-box approach to attack detection. The random choice of

hyperparameters tuned resulted in a significant accuracy. The same hyperparameter cho-

sen may produce a different result on different SDN platform.

• Hybrid Machine learning Model (Support-vector-classifier and Random Forest): In this

model, one or more machine learning models are combined to overcome the disadvantage

of one another. The performance of individual classifier is compared with the hybrid

model which produces better results.

Figure 3.7: TCP data classified with Linear SVC

The classification decision by SVC results in some points being misclassified near the

hyperplane. The result of SVC classifier contain both correctly and erroneously predicted

results. So, these are further processed by Random Forest classifier which acts as sec-

ondary classifier. Figure 3.7 shows the dataset has been reduced to two-dimension by

the application of PCA and later by t-distributed Stochastic neighbor Embedding(t-SNE).

PCA is initially used to reduce the dimensions to twenty. But it only works for the linear

dataset and does not work for a non-linear dataset. So, after applying PCAon the dataset,

t-SNE is applied which preserves local distances between the points in high and low di-

mension and reduced the dimensions to two. After the dimensions are reduced, SVC is fit
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to the dataset, which is shown above. Data with unique protocols is fit to separate linear

SVCs. But for the points which cannot be inferred to lie in any one of the classes are

classified by using the inference from Random forest.

3.4 Experimental Work and Results

The work has been carried out on HP EliteBook with 16 GB RAM and 64-bit processor on

windows 10. Figure 3.8 shows the simulation environment where the single Ryu controller is

connected to the open-vswitch and the vswitch is connected to the various hosts. Benign traffic

is generated from random hosts with the help of mgen tool at the rate of 450 packets per second.

The benign and malicious traffic is generated with a specific packet size for a specific duration

and are mentioned in Table 3.4.

Table 3.4: Simulation Environment parameters

S.No Parameters S.No Parameters

1 Host OS: Windows10 9 Protocol Used : Open-

Flow

2 Guest OS: Ubuntu16.04 10 Graphical package:

MiniEdit

3 VirtualBox: 5.1.26 11 Traffic Generation tool:

mgen, hping

4 Emulator: Mininet 12 Controller Port Number

: 6653

5 Controller: Ryu 13 Simulation Time : 250

minutes

6 Number of Controller:

1

14 Statistics collection in-

terval: 30 seconds

7 Number of Switches: 9 15 Bandwidth plot inter-

val: 30 seconds

8 Number of Hosts: vary

depending on topology

16 Number of topologies:

10

The traffic statistics are collected and written in a CSV file. However, the malicious traffic

is generated from spoofed IP addresses at the rate of 450 packets per second. The spoofed IP

address is used by the attacker at the same packet rate as the benign traffic. The benign and

malicious traffic is generated in successive batches by random hosts. The various statistics are

also collected from the switches but they show different behavior compared to benign traffic.
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Figure 3.8: Experimental Setup for DDoS attack Detection in SDN

The various flow level statistics are collected by calling the OFPFlowStasRequest method in

the Ryu application and port statistics are collected by calling the OFPPortStatsRequest method

after every 30 seconds. We choose an experimental threshold for monitoring interval. The cho-

sen value of the monitoring interval is 30 seconds because it is the optimal experimental value

at which we get the lowest false positives. But as SDN supports programming, this can be

changed as per the network environment while sending the network traffic. Statistics request

messages are handled as events and the response is handled by the corresponding reply handler.

OFPFlowStatsReply includes statistics such as Packet count, byte count, duration_sec, dura-

tion_nsecs, Source IP, and Destination IP. OFPPortStatsReply includes statistics such as Port

number, tx_bytes and rx_bytes. The dataset is created with 1,04,345 rows. Benign traffic is

generated at the rate of 450 packets per second using mgen tool [61] and attack traffic is gener-

ated using hping3 [62] to attack the target host. A log of the features collected from the switches

is created in the CSV file which is accessed as a data repository on Mendeley. Figure 3.9 shows

the process of training and testing the machine learning model on the dataset. Benign and ma-

licious traffic is generated for 1500 seconds for ten different topologies which is approximately

equal to (15000/60) 250minutes of data and 1,04,345 CSV rows. Each row of the dataset is com-
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prised of 23 features. Mininet is used as an emulator on which network topology is emulated

and traffic is logged.

Annotated Traffic 

Dataset

Train Data

Test Data

Learn Model

Trained Model

Performance Evaluation

Figure 3.9: Traffic Classification Using Machine Learning

Benign traffic generates a combination of TCP, UDP, and ICMP traffic. Attack traffic gen-

erates the combination of TCP-SYN attack, UDP flood attack, and ICMP flood attack.

3.4.1 Performance Parameters

Different Machine-Learning models have been trained and tested on our dataset. We evaluated

the performance of each model by calculating Accuracy, Sensitivity, Specificity, Precision, and

F1-score. A sample confusion matrix is shown in Figure 3.5: Confusion matrix is often used

Table 3.5: Confusion Matrix

Positive Predictions Negative Predictions

Actual Positive True Positive False Negative

Actual Negative False Positive True Negative

to calculate the performance parameters of a machine learning algorithm. In a binary classifi-

cation problem, it is defined as a 2 x 2 matrix that shows the actual and predicted values of the

classifier. The four values in the matrix are rather confusing which are explained as below:

a) True Positive tp: True positive is the value where the model prediction and actual values in

the dataset both are positive. i.e., it is the case where the classifier correctly classifies the traffic

as benign and malicious.

b) True negative tn: True negative is the value where the model prediction and actual values

in the dataset both are negative. i.e., it is the case where the traffic is correctly classified as
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malicious.

c) False Positive fp: False positive is the error type where the model prediction is positive and

actual values in the dataset is negative. i.e., it is the case where the traffic is incorrectly classified

as benign.

d) False Negative fn: False negative is the error type where the model prediction is negative and

actual value in the dataset is positive. i.e., it is the case where the traffic is incorrectly classified

as malicious.

Accuracy is one of themeasures of performance and it is mathematically defined as a fraction

where the numerator specifies the sum of true positive and true negative while the denomina-

tor specifies the sum of false positive and false negative along with the terms present in the

numerator. It is defined by the equation:

Accuracy = ((tp + tn)/(tp + tn + fp + fn)) (3.10)

It is the evaluation of the traffic where the classifier correctly predicts both normal and malicious

classes.

Recall is defined as the measure of the correct prediction in the dataset. It is also known

as Sensitivity. For example, if the recall of a model is 0.11, it means that the model correctly

predicts the correct class 11% of the time. It is represented as (R) and defined by the equation

below:

Recall(R) = (tp/(tp + fn)) (3.11)

The recall is equivalent to the detection rate which is defined as the measure of correctly detect-

ing the malicious traffic. Any IDS requires a high detection rate. As seen from the results, the

Hybrid model has the best detection rate in our case.

Specificity is defined as the measure of the prediction of the negative class in the dataset.

For example, if the specificity of a model is 0.11, it means that the model correctly predicts the

negative class 11% of the time. It is defined by the equation below:

Specificity = (tn/(tn + fp)) (3.12)

A high value of Specificity indicates a lower false positive which leads to more accurate results.
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The proposed hybrid model has a high specificity value of 98.18% which is a significant result.

FalseAlarm rate (FAR) is an important parameter tomeasure the effectiveness of any system.

It is the measure of the inaccurate classification when the model classifies the normal traffic as

malicious. An intrusion detection system desires to keep FAR as low as possible.

FAR = (fp/(tp + fp)) (3.13)

FAR is an important parameter that is kept as low as possible. The hybrid model achieves the

lowest FAR of 0.020 which signifies the results.

Precision is defined as the percentage of the model prediction out of the total data values

about the positive class. For example: if the precision of a model is 0.5, it means that out of

the total predictions the model makes, it is correct 50% of the time. It is represented as P and

defined by the equation:

Precision(P ) = (tp/(tp + fp)) (3.14)

Precision predicts the fraction of traffic as benign or malicious, which matches its count present

in the dataset.

F1-score is defined as the measure where recall and precision both are used. In the case of

an unbalanced dataset, we usually calculate F1-score. It is defined by the equation:

F1− score = ((2 ∗R ∗ P )/(R + P )) (3.15)

From Table 3.6, we can infer that the accuracy achieved by the proposed hybrid model is best.

But due to the unequal instances of different classes present in the dataset as depicted inTable 3.2,

another performance parameters also need to be considered. Other parameters like Precision,

recall, and F1-score are also computed in which a high F1-score implies significant results.

Hybrid model has attained the best results.

3.4.2 Result Analysis

Evaluation of the system performance is done using the dataset created in Table 3.6 by calculat-

ing Accuracy, Precision, Recall, FAR, and F1-score. Accuracy comparison of SVM-RF hybrid

model is done against other specified machine-learning models, shown in Figure 3.13. Data ex-

ploration is done to understand the data, the number of instances in each class of traffic, Normal
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and malicious traffic distribution in the dataset. Table 3.2 specifies the instance count of differ-

ent traffic classes present in the dataset. Table 3.3 gives the count of the benign and malicious

traffic in each traffic class. This summary data helps to comprehend the dataset. Figure 3.10

shows the distribution of the Source IP address used in the dataset. The blue color represents

the benign hosts and red color represents the attacker hosts. It reveals that the IP addresses used

for sending benign and malicious traffic are picked from the same pool. It means IP address

alone cannot be used as an indicator of benign or malicious traffic and also significantly use the

various features presented to detect the attack.

Figure 3.10: Distribution of Source IP address in Normal and Attack Traffic.
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Figure 3.11: Accuracy vs Number of Epoch
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Figure 3.12: Loss vs Number of Epoch

Figure 3.11 shows the Artificial Neural network (ANN) achieved an accuracy of 98.2%.

ANN has considerably high accuracy as compared to other machine learning models [63] but it

is a black-box approach to attack detection. The random choice of the hyper-parameters which

are tuned, helps to achieve this accuracy score. Hyperparameters chosen depend on the used

SDN setting. Figure 3.12 shows that cross-entropy loss decreases with an increase in the epoch.

It shows that as the number of times the model is trained on the dataset, the error in classifying

the traffic decreases.

Table 3.6: Performance Measures of different Algorithms

Model Accuracy Detection Rate FAR Specificity Precision F1-Score

Logistic Regression 83.69% 82.46% 0.175 83.97% 83.31% 82.26%

SVC 85.83% 87.46% 0.125 84.04% 85.79% 86.61%

KNN 95.22% 94.37% 0.056 92.34% 96.83% 95.58%

Random Forest 97.2% 95.45% 0.045 94.56% 96.56% 96.23%

Ensemble Classifier 97.5% 96.43% 0.036 95.32% 96.43% 96.72%

ANN 98.2% 97.84% 0.022 97.43% 97.43% 97.12%

SVC-RF 98.8% 97.91% 0.02% 98.18% 98.27% 97.65%

Figure 3.13 shows the accuracy comparison of different classifiers. It clearly shows that the

hybrid SVC-RF model has achieved the highest accuracy in classifying the traffic.

Logistic Regression (LR) model provides an accuracy of 83.69%. It does not offer satis-

factory results because the model is not capturing the correct linear relationship between the
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features and so incorrectly predicted the class labels. It is also widely used in the literature.

K-nearest neighbor (KNN) provides a classification accuracy of 95.22%. KNN is a simple

classification model which depends on simple calculations. Calculation of euclidean distance

between the neighboring point and target point.

Support Vector Machine (SVM) provides a classification accuracy of 85.83%. SVM also

does not offer satisfactory results because it finds the decision plane with the help of support

vectors having the largest separation from both classes. However, the features present in the

dataset are highly correlated and a perfect decision boundary without overfitting might not be

always possible.

Random Forest (RF) is a classifier that uses different decision trees for final classification.

If one decision tree makes a wrong decision then, other trees can compensate for the wrong

decision. Each decision tree provides the classification result and the maximum votes are con-

sidered to suggest the final classification result. Hence, Rf proves to be a better classifier.

Ensemble classifier (EC) is a classifier that uses several classifier to make a decision. The

different classifier which are used includes KNN, Decision Tree, Random Forest, and SVC. The

accuracy achieved by the classifier is 97.5%, which is substantially better than individual clas-
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sifier performance.

Support-Vector-classifier with Random-Forest (SVC-RF) hybrid classifier: This classifier

is used as a combination of two machine learning algorithms and gives the best results with our

dataset.

3.4.3 Comparative Analysis with Existing Results

To evaluate the proposed method, Table 3.7 shows a comparison with the existing work done in

the area of DDoS attack detection using emulated dataset. The top existing benchmark result is

found to be 96%. From the Table, it can be seen that our proposed model achieves the highest

accuracy of 98.8%. The hybrid approach followed for the proposed model plays a significant

role in attack detection.

Table 3.7: Comparison results of traffic classification using various simulated SDN Datasets

S.No Authors Testing Accuracy

1 Meti et al. [15] 80%

2 da Silva et al. [2] 88.7%

3 perez et al. [64] 95%

4 Ye et al. [65] 95.24%

5 Ko et al. [66] 96%

6 han et al. [67] 96%

7 myint et al. [48] 97%

8 Proposed 98.8%

Dataset for unique protocols is fit to linear Support-Vector-Classifier (SVC) [68] and for the

suspicious points, inference from the Random forest is used for final classification. This model

proved to be the best performing model for our dataset with reduced training time as well.

3.4.4 Observation and Discussion

The results shown above clearly indicate that a network administrator of an organization can

easily use in his capacity the machine learning model developed for early detection of the attack.

The DDoS attack can be detected by implementing the proposed machine learning model. The

experimental work is done on the SDN dataset created on the emulator, the software version of

the real switch, so the results will be valid in real-time. The features proposed in the dataset
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can be collected using the proposed method in real-time and the machine learning algorithms

can be deployed for classification. The hybrid model of Support Vector machine and Random

Forest has produced high precision and recall value which is a promising solution in real-time.

SVC-RF model works well as the misclassification of points done by SVC is taken care of by

RF.

Various machine learning algorithms used show promising results for detecting the attack.

The proposed hybrid model shows highest results in terms of various performance parameters

used because of the novel and significant features which we have proposed in our dataset. Also,

the proposed machine learning technique of SVC filtered by Random forest help find the de-

cision boundary which best fits the data and achieve significant results. Previous work which

has been done does not achieve significant results as shown in Figure 3.13, which yet proves

the significance of our results. Previously, attack detection is done by using some statistical ap-

proaches, which we also implemented in our previous work [69] which involve analysis of the

various flow and port statistics. But now with the created SDN dataset, we can use promising

technologies of Machine Learning and Deep Learning to classify the traffic.

3.5 Summary

An innovative DDoS countermeasure is covered in this chapter. DDoS attacks are now causing

havoc in organisations. Despite several countermeasures, the attack has not yet been prevented.

In this chapter, we tried to use machine learning to address the issue of DDoS attack detection.

The hybrid machine learning model of Support vector classifier with random forest produces

the highest classification accuracy of 98.8%.

ARP-based attacks are vulnerabilities exploited by the attacker at the Data-Link layer, which

can lead to MITM and Eavesdropping attacks. Arp vulnerabilities that exist in traditional net-

works exist in SDN as well. Existing solutions toARP-based attacks in SDN are either statistical

or complex cryptography techniques that are both infeasible and computationally intensive. As

a result, in the following chapter, the author proposed a novel method for detecting ARP-based

attacks.
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CHAPTER 4

ASCERTAIN THE EFFICIENTMACHINE LEARNING BASED
APPROACH TO DETECT DIFFERENTARPATTACKS

The previous chapter discussed the detection technique for DDoS attacks, which is primarily

based on the use of a machine learning algorithm. However, there are other vulnerabilities in

traditional networks that occur in SDN. This chapter discusses the ARP vulnerabilities that exist

at the Data-Link layer of a network. SDN provides a novel programming paradigm for detecting

attacks, whichmotivates the development of a solution for dealing withARPvulnerabilities in the

SDN environment. This chapter proposed a novel method for detecting ARP-based attacks [70].

The authors also generated traffic datasets for benign and attack traffic (ARP Poison, ARP

Flood) to achieve the objective of attack detection. This dataset was used to detect ARP poison

and flood attacks using machine learning techniques.

4.1 Introduction

Although SDN provides several advantages due to the logically centralized controller, it is still

highly susceptible to traditional attacks such as Address Resolution Protocol (ARP) Poisoning,

ARPFlooding, and others. ARP is an address resolution protocol that provides the Media access

control (MAC) address of a host, from its IP address. Each host in the network holds an ARP

table that maps IP addresses to MAC addresses. In a traditional network, when the source host

(H1) communicates with the destination host (H2), the source host checks its ARP table for the

destination MAC address. If IP/MAC pairing is not present in H1, it will broadcast an ARP

request packet, which will be answered by the destination host (H2) as shown in Figure 4.1.

The source host (H1) revises its ARP table with the destination MAC address of the Host

(H2) and the communication proceeds. But if the attacker interferes and maliciously updates

the ARP table then it can lead to an attack situation known as an ARP Poison attack [71].

ARP Poison attack: It is an attack where the ARP table reflects malicious information, propa-

gated by the attacker by sending a fabricatedARPrequest or reply packets using Scapy [72]. ARP
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Figure 4.1: Discovering a host during ARP Process

Poison attack can be performed in many ways and two are discussed below:

1) Crafting anARP reply to a genuine host’s ARP request: In this method, the attacker keeps on

waiting for the ARP request packet from the genuine host for which it will craft the ARP reply

packet. While crafting the ARP reply, the attacker put its MAC address in the destination MAC

address field. So, every packet which has to reach the genuine host will now reach the attacker.

2) Crafting an ARP request to a genuine host: In this method, the attacker broadcasts a forged

ARP request packet, to which legitimate hosts respond, resulting in false MAC/IP information

being stored in the ARP table and the table being poisoned. ARP Poisoning and ARP Flood are

the means to carry out the Eavesdropping and MITM attack [73].

ARP Flooding attack: It is an attack that uses random host machine MAC addresses to flood

the host’s ARP table. Random hosts flood the ARP table to capacity, causing delays in the pro-

cessing of legitimate requests.

These attacks can be mitigated by establishing a secure link [10, 74]. The proposed solution

for preventing the attack is to block the specific port identified programmatically, which is ef-

ficient because it avoids handcrafted feature construction and is thus efficient in terms of time

and processor load in mitigating the attack.

Existing solutions are based on either checking the traffic against the storedMAC/IP binding

which becomes a time-consuming task when the network is a significant one, checking the pat-

tern of traffic which is time taking task [20], cryptographic solutions are complex task in terms

of processing power, creating a flow-graph for detection ofARP-Poison attack [75] or statistical

techniques which is also a computationally intensive task. This motivates the author to provide
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a novel solution to ARP-based attacks in the SDN environment. The research contribution of

the work are briefly outlined below:

• SDN traffic dataset for ARP-Poisoning and Flood attack is created with the help of a

mininet emulator [76]. There are no publicly available datasets for this attack. Previous

work has created the experimental data but has not made it public. The proposed dataset

and code for traffic classification are available in Mendeley Data repository1.

• Application of different Machine Learning algorithms is done to classify the network traf-

fic into one of the three classes (Benign, ARP Poison attack, ARP Flooding attack). The

trained ML algorithm on the proposed dataset is implemented as an application at the

controller to categorize the traffic.

• Attack detection on hosts is carried out by analyzing the significant features present in the

dataset with the machine learning model. The machine learning model helps to detect the

attack in less time as shown in Figure 4.8 compared to other statistical methods [77].

4.1.1 Previous work vs Proposed Method

The work on ARP Poison and ARP Flooding has been done in the past also. However, the

approach and techniques followed previously differ significantly from the proposed technique:

Sebbar et al. [78] proposed the detection of MITM by analyzing the delay during which the

node responds to the controller. If the node responds within a threshold time, it is authenti-

cated, otherwise, it is a delay attack. The above approach used a threshold-based approach with

analysis of only one parameter but the proposed approach used seventeen significant parameters

which provide promising results. Cheng et al. [9] proposedRound-Trip-Time’s (RTT)minimum,

average, and maximum cases for ICMP traffic classification. Four different wired and wireless

mediums were considered for the controller, attacker, and genuine host. The accuracy in all four

cases came out to be 70%, 98%, 87%, and 51% respectively. The proposed approach in our

work attained better accuracy of 99.73%. Dhawan et al. [75] proposed the various flow statis-

tics including packet_in count, the number of packets sent, switch-id, port-number, and IP/MAC

binding information via flow graphs. These flow graphs are monitored continuously against the

already defined policies and those learned over time to detect the attack. The approach proposed

1https://data.mendeley.com/datasets/yxzh9fbvbj/1
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in our work analyses mostly similar statistics with more promising results when using the ML

approach.

Hsiao et al. [79] proposed a ML approach for ARP attack detection. The data was collected

from the National University of Kaohsiung by simulating a network of 256 hosts. The dataset

was not published for verifying the results whereas the proposed approach made the data-set

public. Jaspreet Kaur [77] proposed three different methods (including signature-based method,

manual Wireshark packet analysis method, and MLmethod) for ARP spoofing attack detection.

Naive Bayes algorithm achieved the lowest FAR and highest accuracy of 93%. But the proposed

method achieved a better accuracy of 99.73%. Ma et al. [80] proposed the Bayes method for de-

termining the probability of an attack. Based on the probability, it used different ML algorithms

for attack detection. With only four features and no experimental data proof, the author detected

the attack. Our work achieved quite a good accuracy with dataset proof for public validation.

4.2 Materials and Methods

In this section, the significant features generated during the dataset creation along with the pro-

posed methodology are discussed. The dataset generated during the first phase is later used

for network traffic classification. The ML algorithm uses the features in the dataset to classify

traffic, and normal traffic is separated from attack traffic.

4.2.1 Dataset Creation

An efficient dataset contains the adequate features required for early attack detection. A topol-

ogy is emulated in mininet and Internet Control message protocol (ICMP) traffic is sent through

the different benign hosts as shown in Figure 4.2. Some nodes are assumed as malicious nodes

which send crafted ARP requests to poison the ARP table of genuine hosts. During the experi-

mental setup, firstly the topology is created in Mininet.

Secondly, the ARP table of the host is checked and the ARP table of each host contains the

last ping host MAC Address. Then a Scapy script is written to perform the poisoning of the

ARP table. After running the attack simulation, the genuine host’s ARP table is updated with

malicious MAC-ID credentials.

It demonstrates that the IP address (genuine host) is linked to the attacker’s MAC address.

In this manner, anARP Poisoning attack is carried out, in which if host A sends traffic to host B,

it is routed to host C. The proposed dataset is created by writing a python application that runs
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Figure 4.2: Experimental Tree Topology with depth and fanout value of 3

over the Ryu controller and uses the Ryu Application Programming Interface (API).

Table 4.1: Features used in the Dataset

S.No. Features Used S.No Features Used

1 Source MACAddress at ethernet 9 Switch-ID.

2 Source MAC address at ARP header 10 Source port

3 Sender IPAddress in ARP request. 11 Ping statistics

4 Target IPAddress in ARP request. 12 Destination port

5 Protocol Code 13 in_port, out_port

6 Destination MACAddress at ARP 14 Operation Code

7 Destination MACAddress at Ethernet 15 Round trip time.

8 Time to live (TTL) 16 Packet loss

17 Number of Packet_in messages

By invoking the packet_in handler method and matching the ethernet-type field, the ap-

plication collects the features present in Table 4.1. If the ethernet-type field matches the ARP

packet, we extract theARP header information and write each field, including switch-id, in port,

out port, source MAC address in ethernet, destination MAC address in ARP, source IP, destina-

tion IP, and operation code. If the ethernet type matches an IP packet, we determine whether it

is ICMP, TCP, or UDP traffic and extract the matching header fields, which include the above

fields in addition to Source Port, Destination Port, and Time-To-Live (TTL). Another python

application extracts the Round-Trip-Time (RTT) and writes them to the CSV file. These CSV

files are combined to form the dataset, which is based on the common Date-Time field.

The dataset is a CSV file with 1, 34, 000 rows and seventeen features per row. The data is

collected for a total of 30 minutes. The count of data instances in the dataset is summarised in
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Algorithm 4 Proposed Algorithm for ARP-based attack detection and traffic classification.

Input: Traffic statistics of topology attack.

Output: ARP attack classified traffic.

Initialization: Source MAC address, Destination MAC address, Sender IP address, Destina-

tion IP address, Switch ID, in_port, out_port, Protocol code, Number of Packet_in messages,

Operation Code, packet loss.

For each flow extract the features as mentioned above.

Python application executes at the controller and different features are extracted.

for i = Packet1 to Packetn do
ARP header→ARP features

IP header→ IP features

Benign traffic features→ CSV

ARP Poison Traffic features→ CSV

ARP flood traffic features→ CSV

Assign the Benign traffic label as 0.

Assign the attack traffic label as 1.

end for

Apply Machine Learning Algorithm to the labeled training dataset.

(I) Text columns→vectors.

(II) Data Columns→ Normalize.

(III) Dataset→Training and Test dataset.

(IV) Machine Learning Algorithm→Training dataset.

Machine Learning Algorithm→ Classification Results.

return Test Dataset classified into normal and malicious classes.

Table 4.2, with traffic divided into ARP request, reply, and ICMP request, reply packets. The

count of ARP request packets and reply packets does not differ significantly in genuine traffic,

but it differs significantly in ARP flood and Poison attacks due to attacker meddling.

Table 4.2: Message-wise categorization of Dataset.

Traffic Class Benign ARP Poison ARP Flood

ARP request 16749 4622 92138

ARP reply 16600 3397 0

ICMP request 178 129 0

ICMP reply 172 15 0

4.2.2 Proposed Methodology of Traffic classification using Machine LearningAlgorithm

The proposed algorithm is shown in Algorithm 4 and illustrates the steps followed for dataset

creation and further classifying the traffic by using machine learning algorithms. Our approach

is similar to that of [20], but the proposed approach has logged the various features and created

a dataset. The proposed work is distinguished from this work by the use of machine learning
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algorithms on the created dataset to detect the attack.

Different classes of traffic include benign Traffic,ARPPoison attack traffic, andARPFlood-

ing attack traffic. Different ML models are discussed and justified for their performance on the

proposed dataset.

• Logistic Regression (LR) [81]: This algorithm does not perform well for the proposed

approach as it considers the linear relationship between the variables which does not work

in the proposed data where some data points are also inversely related. This algorithm,

when trained with our dataset produces 56.2% accuracy.

• Naive Bayes Classifier (NBC) [82]: The classifier is based on the Naive Bayes theo-

rem which assumes independence among the features to identify the class label. The

assumption of independence among the various features in Naive Bayes resulted in low

performance on the proposed dataset. The dataset features are highly correlated to each

other, so this classifier does not perform well. For example, the malicious traffic has the

same packet rate as normal traffic but it shows the high value of Packet_in messages. This

algorithm provides an accuracy score of 64%.

• Support Vector Classifier (SVC) [83]: The classification algorithm provides an accuracy

of 85.7%.

• Artificial Neural Network (ANN) [81]: ANN is made up of many layers with the help of

which it learns the pattern present in the data. It provides an accuracy of 93.65%.

• Decision Tree (DT) [84]: The algorithm starts from the root of the tree and checks the

value with the other node. The decision is taken either to move left or right based on

the comparison result. It checks the value of each feature before taking the decision. It

captures the dependency between the various features present in the dataset and achieves

an accuracy of 96.37%.

• Random Forest (RF) [84]: In this algorithm, many decision trees perform the classifica-

tion task. In RF, the accuracy is averaged out for a good performing DT and poor DT and

thus performs best. It is well suited for the proposed dataset with the significant features

present in it and yields an accuracy of 97.4%.
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• Ensemble Classifier (EC) [84]: This classifier takes into account multiplemodels (DT, RF,

NB, SVC). Separate classifiers were trained on the dataset, but the result is determined

by the class with the most votes and yields an accuracy of 98.2%.

• Convolution Neural Network (CNN) [85]: CNN is a deep learning algorithm which gen-

erally works for image classification. But Conv-1D ( One dimensional Convolution Net-

work) produces significant results for use-cases like anomaly detection and recommender

system. CNN model refers to a form of neural network with the existence of convolution

layers. The convolution layers contain a kernel to extract the features present in the in-

put and the kernel convolves with the input vector to extract the significant features. The

convolution operation is mathematically expressed by the equation shown below:

Ot = tanh(yt ∗ ht + st) (4.1)

Here Ot is the output after convolution, yt is the input, ht is the weights associated with

the kernel, and st is the bias associated with the kernel. The extracted features are of

high dimension so the max-pooling layer accepts the output of the convolution layer and

generates a lower feature dimension as output. When it is applied to the proposed dataset,

it produces significant results as it automatically detects the significant features required

for classification. Also, Conv-1D does not require much pre-processing. This algorithm

yields an accuracy of 98.4%.

• Long Short Term Memory (LSTM) [86]: Recurrent Neural Network (RNN) suffers from

an issue called short-term memory. This issue occurs due to the smaller value of gradients

used for weight updation. In initial layers, the gradient has the smallest values, due to

which the layer does not learn. Thus, during long sequence prediction, RNN has a short-

term memory. LSTM evolved as a solution to this issue. It operates through the use of

gates (input, forget, and output gate) which are a kind of neural network to assure that

relevant information for prediction is not lost. LSTM produces significant results with

the proposed dataset as it has time-dependent features. The characteristic equation of the

LSTM network is mathematically expressed as under:

c(t) = ft ∗ ct−1 + it ∗ ct (4.2)
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Here, ct is the state of a memory cell at time t, it is the input gate, ct−1 is the prior cell

condition and ft is the forget gate result. When applied to our dataset LSTM does not

produce significant results as it might not able to extract the relevant features to be used

for classification. This algorithm yields an accuracy of 94%.

Table 4.3: Hyper-Parameters of CNN-LSTM Model

S.No. Parameters Value

1 Filters at Conv Layer 64

2 Kernel size 3

3 Activation function at Conv Layer relu

4 Padding at Conv Layer 1

5 Activation function at Pooling layer relu

6 Hidden nodes in LSTM layer 128

7 Activation function at LSTM layer tanh

8 Batch Size 64

9 Learning Rate 0.001

10 Optimization function adam

11 No. of Epoch 50

• Hybrid CNN-LSTM: The hybrid model has yielded significant results in the past. LSTM

can remember the past longest distance input sequence while working on the current input.

CNN has the advantage of extracting relevant features automatically. Thus, the combina-

tion of appending CNN layers with LSTM yields a hybrid model and provides promising

results. Figure 4.3 depicts the architecture of the CNN-LSTM model that was used and

outlines the number of layers and kernels used at each step. This algorithm yields an

accuracy of 99.73%. Table 4.3 shows the experimental parameters associated with the

model. The model requires more epochs to converge because the dataset is bigger with

one lakh thirty four thousand rows. It requires 50 epochs of training, after which only the

model converges.

4.3 Implementation Details and Results

The implementation environment utilized for performing the experiments is shown in Table 4.4.

It shows the various parameters related to the simulation environment which mainly includes the

mininet emulator for creating the topology and running the traffic tests using the Ryu controller.
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Table 4.4: Simulation Environment Parameters

Parameter Value Parameter Value

Host OS Windows10 Guest OS Ubuntu 18.04.

Virtual Box 6.1 Emulator Mininet.

Controller Ryu. No. of Controllers 1.

No. of Switches Topology Dependent. No. of Hosts Topology Dependent

Protocol Used Openflow Graphical Package MiniEdit.

Traffic Tool mgen, tcpdump Port Used 6653.

Simulation Time 300 sec No. of Topologies Seven.

The number of switches and hosts may vary depending on the selected topology. The benign

traffic is generated using the mgen tool and attack traffic is generated via hping3 tool. Benign

and malicious network data is generated at the rate of 10 packets per second (pps). Traffic

is generated for the duration of 300 seconds for seven different topologies which are equal to

3000 seconds of data for each topology and 21000 seconds of total data equals 30 minutes of

data. This data is distributed amongst 134000 rows in a CSV file. The dataset is used for traffic

classification in SDN.

4.3.1 Performance Parameters

Different machine learning algorithms have been evaluated by calculating different evaluation

measures such as Accuracy, Precision, Recall, and F1-score. In a classification problem, the

values from the confusion matrix are used to calculate the prediction matrices.
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Specificity is defined as the model prediction of the negative class in the dataset, i.e., if an

ML model predicts specificity as 0.81, it implies that ML model prediction about the negative

class present in the data is 81%. It is mathematically expressed as follows:

Specificity = (tn/(tn+ fp)) (4.3)

An increase in the Specificity value is a good indicator of lower false positives. CNN-LSTM

model attains a specificity value of 98.18% which is an indicator of fewer false positives and

hence desirable.

FalseAlarm rate (FAR) is also one of the significant performancemeasures. It determines the

rate of mis-classification i.e., if the model predicts the benign traffic as intrusive. Any network

traffic monitoring system aims to keep the FAR value the lowest.

FAR = (fp/(tp+ fp)) (4.4)

CNN-LSTM algorithm attains the FAR value of 0.018 which significantly evaluates the model

performance.

4.3.2 Result Analysis

This section summarizes the results which are attained by applying the CNN-LSTM model to

the dataset. Figure 4.5 expresses the accuracy achieved by different ML algorithms. CNN-

LSTM model outperforms all other models as the hybrid of CNN and LSTM works well on the

proposed dataset.

Figure 4.6 shows the accuracy increase with the number of epoch and attained a significant

accuracy of 99.73%. Figure 4.7 shows the loss decreases with the number of epochs. The
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model is trained each time the epoch increases and can better classify the traffic which leads to

a decrease in loss.

Figure 4.8 depicts the time taken to depict the attack. It shows that the ARP Poison attack is

depicted within microseconds but the ARP Flooding attack is depicted in seconds of its occur-

rence.

The impact analysis of the attack is evaluated by analyzing the CPU utilization and memory

utilization when the attack takes place.

Figure 4.9 depicts the memory usage by host H1. When the ARP Poison attack takes place,

the traffic flow between the benign hosts is diverted to the middle man H1. It rises above the

normal usage limit of 2*10-6 MB.
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Table 4.5: Performance measures of different Algorithms

Model Accuracy Precision ARP Poison ARP Flooding

Precision Recall F1-Score Precision Recall F1-Score

LR 56.2 55.4 54.3 53.4 52.6 55.7 54.3 55.3

NB 64.0 63.4 64.5 63.2 62.3 61.4 63.9 63.6

SVC 85.7 83.8 84.7 86.4 84.5 86.6 85.8 84.9

ANN 93.6 92.8 90.5 91.2 93.2 91.4 92.5 93.4

DT 96.3 94.6 91.2 92.3 94.4 93.1 92.7 95.4

RF 97.2 96.8 97.3 95.6 94.2 93.4 95.4 96.8

EC 98.2 97.7 96.4 97.1 95.7 98.1 97.3 97.9

CNN 98.4 97.8 98.3 95.6 91.2 93.4 95.4 97.7

LSTM 94 92.7 91.4 93.1 91.9 90.5 92.3 93.9

CNN-LSTM 99.73 97.8 98.3 95.6 96.2 97.4 95.4 98.9
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Figure 4.10 depicts the CPU utilization at host H1. When an ARP Poison attack occurs, the

CPU utilization increases to 97%. This utilization increases, due to the attacker which eaves-

drops on the traffic between two genuine hosts. Due to this a lot of ARP request messages got

accumulated and CPU utilization increased. But when the attack is depicted by the detection

module, the corresponding ports are programmed to drop the messages. Due to this, the port

utilization of the target host decreases.

Table 4.5 shows the Accuracy, Precision, Recall, and F1-score achieved for attack detec-

tion. It can be seen that due to the large gap in the number of instances present in the dataset,

other performance measures like F1-score also have to be evaluated and a high F1-score means

promising results.

4.3.3 Comparative Analysis with Existing Results

To evaluate the proposed method, a comparison is done with the existing work done in the area

of ARP-based attack detection using emulated dataset. The top existing benchmark result is

found to be 96%. From the Table, it can be seen that our proposed model achieves the highest

accuracy of 99.73%. The hybrid approach followed for the proposed model plays a significant

role in attack detection.

Table 4.6: Comparison of proposed work with existing research for ARP-based Attacks.

S.No Authors Testing Accuracy

1 Hsiao et al. [79] 95.9%

2 Sebbar et al. [78] 98%

3 Jaswinder kaur [77] 93%

4 abdullah et al. [10] 91.2%

5 ma huan et al. [80] 80%

6 cheng et al. [9] 96%

7 Proposed 99.73%

Table 4.6 compares the proposed work to previous work done by other researchers. The

existing highest result shows an accuracy score of 97% and the proposedwork shows an accuracy

score of 99.73%. The hybrid of CNN and LSTM achieves significant results with the chosen

hyper-parameters.
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4.3.4 Observation and Discussion

The significant results achieved indicate a promising solution for detecting the ARP attack. A

trained MLmodel can predict the attack class with high accuracy. As the dataset is created using

an emulator, the solution will work in real-time with approximately similar accuracy. Various

other solutions which already exist either use a non-SDN dataset or have used an experimental

dataset that is not accessible to the research community. There are various other approaches

including the statistical approach, cryptographic approach, Flow-graph based approach which

have been applied for ARP Poison and ARP Flooding attacks detection but they do not provide

significant performance. As compared to previous approaches, the ML approach has achieved

significant results as can be evident from the high precision and recall value. A topology Poison

and Flooding attack dataset is created using mininet. The created dataset is significant because

to the best of our knowledge,ARPPoison and Flooding attacks dataset is not available for public

use. The trained hybrid CNN-LSTM model performs best, which implies that it has identified

key features for attack detection and hence can be deployed in real-time in an SDN environment.

But due to the lack of an appropriate SDN dataset, the attack detection has not been done with

this method, which otherwise, is the best choice as it produces significant results. In our previous

work, the work on the classification of DDoS attack detection using machine learning has been

done [39].

Different machine learning models proposed have also shown significant results for attack

detection.

4.4 Summary

This chapter discusses a cutting-edge ARP-Poisoning and flood attack defence strategy. ARP-

based attacks can now occur in SDN in addition to conventional networks. The atttcak cannot

be avoided despite the many prevention techniques. In this chapter, we tried to use machine

learning and deep learning to address the issue of ARP Poison and flood attack detection. In an

attempt to applyMachine learning and deep learning techniques,ARPDataset for SDN has been

generated. The best performing algorithm of CNN-LSTM classifies the traffic with an accuracy

of 99.73%.

The next chapter chooses to follow the use of Deep Learning techniques for DDoS attack

detection. The previous work of detecting DDoS attacks using machine learning for feature ex-
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traction is time-consuming. It can bemademore efficient by using a deep learning technique that

automatically extracts the important features for attack detection, as discussed in the following

chapter.
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CHAPTER 5

DDOSATTACK DETECTION USING DEEPLEARNING

In Chapter 3, DDOS attack detection is performed using ML algorithms. But the results can

be improved using the efficient Deep Learning algorithms. A considerable time was spent on

manual feature extraction using machine learning algorithms. While Deep Learning techniques

extract the significant features automatically making the process more efficient. Deep Learning

Techniques can also improve classification accuracy. This chapter applies Deep Learning tech-

niques using SDN-DDOS dataset for DDoS attack detection. Deep learning algorithms offer

significant solutions in a variety of fields, so we tried this technique to improve the accuracy of

the results obtained. Existing work [50] for DDOS attack detection using Deep Learning pro-

vides significant results for attack detection in the network in which Stacked Auto-Encoder and

Multi-Layer Perceptron(SAE-MLP) provide the highest rate of attack detection. This chapter

reviews the publicly available datasets where DDOS attack detection is done by implementing

different deep learning algorithms using the proposed SDN-DDOS dataset and other publicly

available datasets.

5.1 Introduction

SDN is vulnerable to a variety of attacks. Network Manipulation attack, Traffic Diversion at-

tack, Side-channel attack, App manipulation attack, Denial of Service (DoS) attack, Distributed

Denial of Service (DDoS) attack, ARP Spoofing attack, API exploitation attack, Traffic sniffing

attack, and Password guessing attack are a few examples. Previous work which has been done

in this area mainly focused on applying statistical techniques, Machine learning algorithms for

anomaly detection in SDNwhich does not yield significant results. So, the author proposed deep

learning algorithms for traffic classification in SDN setup. We aim to classify normal traffic and

Distributed-Denial-of-Service (DDoS) [87] traffic. DDoS leads to disruption of the target host

services by flooding it with requests from many different sources.
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In this work, we have been provided with a customized Software Defined Network (SDN)

dataset generated on a mininet emulator and available in the Mendeley data repository 1. In this

dataset, there are three different types of attacks that have been done. The various instances

present in the dataset can be divided into normal and malicious categories. The normal traffic

can further be divided into TCP traffic, UDP traffic, and ICMP traffic. The malicious traffic

can be further divided into TCP-SYN spoofing attacks, UDP flood spoofing attacks, and ICMP

flood spoofing attacks.

Authors are motivated to work on this particular attack because this is a devastating attack

and still not many significant results have been found. So, in this work, an effort is made to apply

the promising Deep learning techniques to detect the DDOS attack. Deep learning techniques

are more efficient and automatically detect the features which can be used to detect the attack.

The contributions of the research work are described below:

Table 5.1: Comparison between Proposed and other publicly available Datasets

Dataset Year Realistic Traffic Label Balanced No. of Attributes Format Network Environment

KDD’99 1998 No Yes No 41 CSV and json traditional network

NSL-KDD 2009 Yes Yes No 41 ARFF traditional network

Kyoto 2006-2009 Yes Yes No 24 text traditional network

ISCX-2012 2012 Yes Yes No 20 PCAP traditional network

CICIDS-2017 2017 Yes Yes No 83 CSV traditional network

CSE-CIC-IDS-2018 2018 Yes Yes No 83 CSV AWS

SDN-Dataset 2020 Yes Yes No 24 CSV SDN

1. VariousDeep learning algorithms have been evaluated for traffic classification using SDN-

DDoS-Dataset. Deep learning algorithms automatically extract the significant features

from the dataset which play an important role in classifying the traffic.

2. The publicly available datasets for attack detection in SDN are reviewed and shown in

Table 5.1. The public datasets contain only a subset of the features which is common

between traditional architecture and SDN, because of which even the best classifier is not

able to attain significant classification results.

3. Furthermore, the various deep learning algorithms for traffic classification have been eval-

uated using publicly available datasets. The comparison of deep learning algorithms on

public datasets and SDN-DDoS datasets is done. It is found that deep learning algorithms

achieved better accuracy with the proposed SDN-DDoS dataset.

1https://data.mendeley.com/datasets/jxpfjc64kr/1
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5.1.1 DDOS attack Public Datasets

Traffic classification is one of the most important areas of network management. There are

broadly three approaches for network traffic classification: A port-based approach that is sim-

ple and fast but can be easily manipulated and thus not reliable. Another approach followed in

literature is Deep packet inspection which provides good results but can only be used for unen-

crypted traffic and in the real world most of the data/traffic is encrypted. Finally, the artificial-

intelligence-based approach is considered to be reliable and is the main focus of our work. The

choice of the deep neural network (DNN) based model depends highly on the dataset at hand.

A Convolutional Neural Network (CNN) can automatically extract traffic features from an un-

secure network. The different deep learning techniques are applied to perform the task of traffic

classification. Also, a comparison between different publicly available datasets is done. Some

of the publicly available datasets are:

KDD’99 [88]: It is the popular dataset for network intrusion detection. The dataset was

developed in 1998 and consists of 41 features. The features are grouped into three categories:

general features, network features, and data-based features. There are five classes of traffic

present in the dataset which includes one benign and four attack categories. The attack categories

include Denial of Service (DoS), Remote to Local (R2L), User to Root (U2R), and probe attacks.

But there is a large number of duplicate records present in the dataset because of which the

dataset has become obsolete.

NSL-KDD [89]: NSL-KDD is the refined form of the KDD’99 dataset. Redundant records

were removed and the dataset is split into training and testing datasets. The traffic classes rep-

resented in both sets are different. Both the datasets have been in use for a long time, so they

are not updated with the latest attacks. Also, the dataset is incompatible with SDN as the dataset

is produced for a traditional network. Despite this, various authors have used the dataset for

intrusion detection in the SDN which results in false alarms and a low rate of attack detection.

Kyoto dataset [90]: It was created at Kyoto University and consists of twenty-four features.

Some of the features are in common with the NSL-KDD dataset. The normal and DDoS attack

traffic is recorded simultaneously. The majority of the traffic type present in the dataset is the

attack class. Also, the attack categories in the dataset are not labeled which makes it difficult

in evaluating the dataset. Also, the traffic is generated in different conditions which makes it

difficult to correlate the traffic instances.
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ISCX2012 [91]: The dataset is created by generating the traffic via two groups. The ma-

licious traffic is comprised of DDOS and other attacks which are created in the α group and

benign traffic is created in the β group. The malicious traffic includes Denial of Service and

exhaustive search attacks. It has a total of twenty features in the dataset.

Also, the normal traffic does not show the latest traffic pattern and consists of HTTP traffic

instead of HTTPS traffic. The dataset is not so popular because it produces a high false alarm

rate when evaluated against the machine learning algorithms.

CICIDS-2017 [92]: The dataset contains more than eighty features as compared to twenty

features in the ISCX2012 dataset. Also, the normal traffic contains HTTPS traffic which pro-

vides an advantage to the dataset. But the dataset has multiple null values and missing informa-

tion regarding the class labels. Furthermore, the proposed dataset size is gigantic and contains

duplicate entries.

CSE-CICIDS-2018 [93]: This dataset is identical to CICIDS-2017 but deployed usingAma-

zon (AWS) environment. The idea of using profiles to record the traffic is utilized. The dataset

contains two general classes of traffic. B-profile is responsible for benign traffic generation,

and M-Profile is responsible for malicious traffic generation. The traffic class of benign and

malicious traffic is similar to the CICIDS-2017 dataset.

The various datasets discussed above can be compared based on the features which are avail-

able in SDN but not available in traditional Datsets. Because of this, network traffic classifi-

cation research works that use machine learning approaches to classify traffic using traditional

datasets are unable to identify the attack in a meaningful way. Table 5.2 depicts the various

features which are present in SDN but not available in traditional network.

A point to note for all the datasets mentioned above is that they are not generated in an SDN

environment. It means to measure the effectiveness of these datasets in an SDN environment

might not provide accurate results. The architectural difference between both the traditional and

SDN environment provides certain features which are specific to SDN and not in use by the

traditional architecture. Besides, the dataset is created depending on a specific security issue.

So, a compatible dataset for SDN should only be used in an SDN environment. Some of the

attacks cannot be properly differentiated in traditional and SDN environments. For example, IP

sweep and Port scan attacks are not considered DDoS attacks in an SDN environment, due to

which the well-known classifiers cannot perform. So, using the traditional datasets in an SDN

environment for intrusion detection will generate false alarms.
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Table 5.2: Comparison between Proposed and other publicly available Datasets

S.No Feature Traditional Dataset SDN Dataset

1 Src & Dst IP X X
2 Src & Dst Port X X
3 tx_bytes &rx_bytes X X
4 Total number of flows X X
5 Datapath - X
6 Packet count per flow - X
7 Byte count per flow - X
8 Number of Packet_in messages - X
9 Packet Rate X X
10 Src & Dst MACAddress X X
11 Ping Statistics - X
12 Round trip time - X

5.2 Methodology

The proposed research framework for DDOS attack detection is explained briefly. The dataset

generated during the first phase of dataset generation is used in the second phase for network

traffic classification. The features in the dataset are used by the deep learning algorithm for traf-

fic classification into normal and attack classes. The various deep learning algorithms employed

are listed below:

5.2.1 Deep Learning Algorithms Used

There are different ways to detect a DDoS attack. Some of them are based on the computation of

some parameters, others are based on graphical methods to detect the attack, etc. In this section,

the Deep learning algorithms for DDoS attack detection are discussed.

• Convolution neural network [94]: Convolution Neural network (CNN) is one of the fa-

mous models for image classification. But a variant of it, CNN-1D is applicable for text

data as it is successfully applied to recommender system and various natural language

processing tasks in which it yields significant performance. The important advantage of

this algorithm is its ability to automatically detect important features without any human

intervention.
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Figure 5.1: CNN-1DArchitecture [1]

Figure 5.1 shows the architecture of the ConvolutionNeural Networkwhen applied to one-

dimensional data. When it is applied to one-dimensional data the variant of Convolution

2D is used and other layers remain the same.

• A Recurrent Neural Network [95] is best for time series data where the current state de-

pends on previous states. As the name suggests the network is recurrent and there is a

single layer that works as many layers as shown below :

– X (t) means input at time t.

– O (t) means output at time t.

– S(t) means state at time t.

– W means Weight (Constant).

Figure 5.2: RNNArchitecture [2]

Figure 5.2 represents the RNN representation, where the output at any time is a function

of the present state and previous output. As the network gets deeper for RNN vanishing

gradient problem arises where the model learns negligible, thus the model isn’t able to

reach its optimal state or exploding gradient problem arises which is vice versa, thus the

model is going far from its optimal state.
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• Long-Short-Term-Memory (LSTM) [95]: LSTM is a special case of RNN which is used

when the gap between the past information and the place where the information is needed

is small. But as the gap increases, RNN cannot work whereas LSTM does not have any

such disadvantage. The problem of RNN has been solved by the LSTM architecture.

LSTM architecture has been discussed as a combination of the input gate layer and tanh

layer which decides what information we are going to get from the cell state and what

new information we can add to the cell state respectively.

• CNN-LSTM:LSTM is the special case of RNN for solving long-range dependency. LSTM

is used for long-range sequence prediction and CNN is used for feature extraction. This

combination makes them suitable for various tasks including natural language processing

problems where CNNs are used as feature extractors and LSTMs on audio and textual

input data. The model also works well in our problem domain.

• SVC-SOM: Most of the supervised deep learning algorithms tend to have high model

complexity, which results in a larger time for convergence of the models. A faster and

more efficient method will aid in the intrusion detection process [55]. In this method, we

use Linear SVCs along with an unsupervised deep learning method called Self Organizing

Map (SOM) [96]. There is a unique SVC for each protocol type present in the data. As

the dataset consists of three protocols TCP, UDP, and ICMP, there are three linear SVCs

in the model.

In our method, we have used multiple SOMs along with multiple SVCs for the classifi-

cation. This resulted in better results at an expense of greater time for learning. When

we tried with three different SOMs along with three different SVCs for each protocol, we

found that the last method yields more accurate results at the expense of more training

time.

• SAE-MLP: Stacked autoencoder [97] comprised ofmany autoencoders tied togetherwhere

the result of one autoencoder is fed to the input of other and a SoftMax classifier is later

used which is used for feature extraction.
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Figure 5.3: SAE [3]

Figure 5.3 shows the autoencoder in the working stage where it first encodes the input

and later uses a decoder to decode which is a compressed representation of the input. An

autoencoder can be thought of as a neural network but the difference between the neu-

ral network and autoencoder is that the autoencoder is comprised of two parts Encoder

and Decoder resulting in a compressed representation of data than the original one. An

autoencoder has a term of sparsity penalty associated with autoencoder during training.

In general, stacked autoencoders outperform autoencoders in terms of model learning.

Stacked Autoencoder is used in hybrid with MLPmodel because Multi-Layer Perceptron

has the curse of dimensionality and SAE is good for dimensionality reduction. During

the implementation, the use of two different optimizers is done. Stochastic gradient de-

scent (SGD) is used for the first 10 epochs and Adam for the next 150 epochs, which

reduced the training time considerably. SGD worked with a higher learning rate while

Adam worked with the default initial learning rate. Thus, with a hybrid of SAE-MLP, the

curse of dimensionality from MLP was lifted and it performed considerably better.
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Algorithm 5 Proposed Algorithm for DDOS attack detection in SDN using Deep Learning.

Input: SDN Traffic Dataset is required as input.

Output: Classified attack Traffic from normal traffic is returned.

Initialization: Normal traffic Packet per flow, Attack traffic Packet per flow, Count of

packet_in messages generated, Count of flows generated, Packet Rate.

1: For each flow, Deep LearningAlgorithm analyses the features present in the dataset. Dataset

is analyzed and processed by following steps.

2: for i = flow1 to flown do

3: To collect the flow statistics OFPFlowStatsRequest method is invoked and the required

flow statistics are invoked from the switch at a regular interval.

4: To collect the port statistics OFPPortStatsRequest method is invoked and the the required

port statistics are invoked from the switch at a regular interval.

5: Src_IP → Digit_Extract(Src_IP )
6: Dst_IP → Digit_Extract(Dst_IP )
7: SwitchID → Sort(SwitchID)

8: flowi=1 → Encode(flowi=n)

9: flowi=1 → Normalize(flowi=n)

10: Split the dataset into Train and Test dataset.

11: The significant features are selected using the Recursive feature elimination method.

12: (featuresn)→ (featuresn−15)

13: Train data
transform−−−−→SF Train Dataset

14: Test data
transform−−−−→SF Test Dataset

15: Deep Learning Model
SF Train Dataset−−−−−−−−→SF Trained Model.

16: Evaluate the performance

SFTrainedModel
evaluate−−−−→SFTest Dataset. Deep LearningModel→Tuned (Deep learning

model)

17: Repeat and Go to Step 3.

18: end for

19: return Attack traffic classified from benign traffic.

5.2.2 Proposed Methodology

In this section, the method which has been followed in the work is discussed. We also show the

step-by-step procedure of methodology given below. The steps taken during the methodology

are depicted in Algorithm 5. The module DigitExtract() extracts the last digit from the features

SrcIP and DstIP. Sort() is the module that sorts the dataset by the switch ID field. Encode()

takes the flow information and encodes the categorical features in the dataset into the vector

form required by machine learning algorithms. Because some features in the dataset have small

values while others have large values, machine learning algorithms may produce biased results.

The Normalize() module normalizes the features in the dataset to a value between 0 and 1.

Using feature selection methods, the important features in the dataset can be identified. There
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are various feature selection methods available in the literature, but when applied to our dataset,

they all produce mostly the same results, so we used the Recursive Elimination feature selection

method to select the significant features present in the dataset. The various Deep Learning

models mentioned are trained on the transformed dataset, which is the updated dataset after non-

significant features are removed. After theDeep Learningmodels have been evaluated on the test

dataset, their performance is measured using metrics such as Accuracy and F1- Score. Tuning

the hyperparameters improves the model’s performance where hyperparameters are tabulated

above. Finally, with a significant accuracy score, the optimized model classifies the traffic

dataset into normal and attack classes.

Train Data Build Model

Trained 

Model

Hyperparameter 

tuning

Optimized 

Model

Test Data
Dataset

Figure 5.4: Block diagram of the methodology followed.

Figure 5.4 shows the methodology which has been followed to for traffic classification into

attack and benign classes. The different steps involved for the same are discussed below:

1. Data Pre-Processing: The dataset consists of 22 features and is available in the Mendeley

data repository. The dataset’s features are mostly statistical in nature. The traffic flow in

our dataset contains three different protocols: TCP, UDP, and ICMP. The dataset is anno-

tated programmatically by labeling the traffic by setting the variable, which differentiates

the various traffic categories. The label denotes whether the traffic is an attack or nor-

mal. The dataset consists of features such as source and destination IP addresses along

with providing information about the bytes, packets, duration, transfer speed, etc. Dataset

pre-processing involves removing the redundant flows in the dataset and other attributes

which are zero. The next step is to identify the type of the variables i.e., whether the vari-

able is categorical or numerical, and encode the categorical variables. Here, categorical

variables such as Source IP, Destination IP, Switch ID, and Protocol are encoded. All the

categorical variables were encoded by using one-hot-encoding. After that, the normal-

ization [98] of the features by using min-max scalar is done. The values in the dataset
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are normalized within the range of 0-1. The next step is to find the correlation between

the various features. The correlation score of various features was compared with the

threshold and if it is found to be greater than the threshold, the particular feature is a less

significant one and it needs to be removed. The significant features are fed to the deep

learning model.

2. Apply Deep Learning classifiers: In this step, we apply various Deep learning classifiers

which have been discussed in section 5.2.1. The dataset is trained on a particular model

and then it is tested on the unseen data.

3. Evaluation: In this step, the applied models were evaluated using measures of accuracy,

precision, recall, F-score, False positive rate, and False negative rate.

4. Hyperparameter Tuning: After the evaluation of the dataset is done, further improvements

can be performed in the model performance through hyperparameter tuning. Various hy-

perparameters that have been used are shown in Table 5.3 and include the number of

layers, the number of epoch and the regularization parameter which when tuned give op-

timized results.

Table 5.3: Parameters used in SAE-MLP model

S.No. Parameter Value

1 Filters at Convolution layer. 64

2 kernel size 3

3 Activation function at autoencoder. sigmoid

4 Padding at decoder. 1

5 Activation function at MLP relu

6 hidden nodes in the MLP layer 128

7 Activation function at MLP layer tanh

8 Batch size 64

8 Learning rate 0.001

9 Optimization function adam

10 Epochs 50

11 Optimization function SGD
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5.3 Implementation Details and Results

In this section, the implementation environment utilized for performing the experiments has

been discussed. The work has been carried out on HP EliteBook with 16 GB RAM and 64-bit

processor on windows 10. A single Ryu controller is connected to the open-vswitch and the

vswitch is connected to the various hosts. Benign traffic is generated from random hosts with

the help of mgen tool at the rate of 450 packets per second. The benign and malicious traffic are

generated with a specific packet size for a specific duration. The work makes use of the dataset

generated for DDOS attack detection in SDN.

To evaluate the performance of different models, some parameters are measured and eval-

uated. Evaluation parameters include Accuracy, Precision, Recall, F1-score and are discussed

through the Confusion matrix. Apart from the above-mentioned evaluators some of them are

also mentioned below:

False Positive rate(FPR): It can be interpreted as the false alarms raised due to incorrect

predictions of the attack class to be normal class.

FPR = (fp/(tn + fp)) (5.1)

FPR must be less to keep the false alarms nil and should be minimized.

False Negative Rate (FNR): It can be interpreted as the false alarms raised due to incorrect

predictions of the normal class to attack class.

FNR = (fn/(tp + fn)) (5.2)

Here, tp, tn, fp, fn are the True Positives, True Negatives, False Positives, False Negatives and are

computed by using the dataset. It can also be computed as one minus true positive rate. From

Table 5.4, it is clear that the accuracy achieved by the proposed SAE-MLP model achieved

the best results. The SDN-dataset [52] utilized has an imbalanced count of classes, so other

evaluators including Precision, recall, and F1-score need to be measured where a large value of

F1-score indicates promising results.
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Table 5.4: Classifier Performances

Model Acc NPrec APrec NRecall ARecall NFScore AFScore FPR FNR

CNN 0.9874 0.9875 0.9873 0.9890 0.9855 0.9883 0.9864 0.0144 0.0109

LSTM 0.9560 0.9620 0.9490 0.9564 0.9556 0.9592 0.9523 0.0443 0.0435

CNN-LSTM 0.9948 0.9943 0.9955 0.9966 0.9926 0.9954 0.9940 0.0073 0.0033

SVC-SOM 0.9545 0.9671 0.9375 0.9540 0.9551 0.9605 0.9462 0.0448 0.0459

SAE-MLP 0.9975 0.9996 0.9969 0.9977 0.9994 0.9987 0.9982 0.0005 0.0022

Figure 5.5: Execution Time of Different Models

5.3.1 Experimental Results and Analysis

In this section, various results attained are discussed. The performance of different deep learn-

ing models is evaluated against the different performance parameters. From Table 5.4, it is

clear that the accuracy achieved by the proposed SAE-MLP model achieved the best results.

Table 5.5 compares the execution times of different algorithms. It demonstrates that the SAE-

MLPmodel takes the longest to execute when compared to other models. The highest accuracy

of 99.75% achieved by the SAE-MLP model comes at the cost of a 216.39 seconds execution

time. Figure 5.5 depicts a pictorial representation as well.

Table 5.5: Execution Time required by different MLAlgorithm

S.No. Algorithm Execution Time in seconds

1 CNN 101.54

2 LSTM 113.21

3 CNN-LSTM 124.32

4 SVC-SOM 79.58

5 SAE-MLP 216.39
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Table 5.6: Performance of different classifiers on public datasets

Dataset Model Acc NPrec APrec NRecall ARecall NFScore AFScore FPR FNR

KDD’19

CNN 0.8874 0.8875 0.8873 0.8890 0.8855 0.8883 0.8864 0.1144 0.1109

LSTM 0.7760 0.7420 0.7490 0.7564 0.7556 0.7592 0.7523 0.0443 0.0435

CNN-LSTM 0.9848 0.9875 0.9855 0.9866 0.9826 0.9854 0.9840 0.0073 0.0033

SVC-SOM 0.9545 0.9671 0.9375 0.9540 0.9551 0.9605 0.9462 0.0448 0.0459

SAE-MLP 0.9835 0.9996 0.9969 0.9977 0.9994 0.9987 0.9982 0.0005 0.0022

NSLKDD

CNN 0.9874 0.9875 0.9873 0.9890 0.9855 0.9883 0.9864 0.0144 0.0109

LSTM 0.9560 0.9620 0.9490 0.9564 0.9556 0.9592 0.9523 0.0443 0.0435

CNN-LSTM 0.9948 0.9943 0.9955 0.9966 0.9926 0.9954 0.9940 0.0073 0.0033

SVC-SOM 0.9545 0.9671 0.9375 0.9540 0.9551 0.9605 0.9462 0.0448 0.0459

SAE-MLP 0.9953 0.9986 0.9959 0.9957 0.9964 0.9947 0.9981 0.0006 0.0034

kyoto

CNN 0.9765 0.9675 0.9573 0.9459 0.9765 0.9876 0.9567 0.0543 0.0238

LSTM 0.9560 0.9620 0.9490 0.9564 0.9556 0.9592 0.9523 0.0443 0.0435

CNN-LSTM 0.9848 0.9743 0.9455 0.9676 0.9852 0.9654 0.9784 0.0673 0.0784

SVC-SOM 0.9785 0.9171 0.9475 0.9340 0.9231 0.9405 0.9532 0.0231 0.0769

SAE-MLP 0.9785 0.9679 0.9623 0.9777 0.9594 0.9687 0.9638 0.0021 0.0543

ISCX-2012

CNN 0.9754 0.9865 0.9785 0.9860 0.9812 0.9683 0.9764 0.0245 0.0342

LSTM 0.9760 0.9650 0.9790 0.9464 0.9856 0.9792 0.9823 0.0454 0.0364

CNN-LSTM 0.9485 0.9643 0.9578 0.9678 0.9756 0.9854 0.9780 0.0065 0.0073

SVC-SOM 0.9645 0.9643 0.9575 0.9340 0.9561 0.9805 0.9762 0.0573 0.0684

SAE-MLP 0.9891 0.9896 0.9869 0.9856 0.9894 0.9865 0.9782 0.0785 0.0673

CICIDS-2017

CNN 0.9674 0.9775 0.9573 0.9864 0.9675 0.9783 0.964 0.0144 0.0109

LSTM 0.9560 0.9620 0.9490 0.9564 0.9556 0.9592 0.9523 0.0443 0.0435

CNN-LSTM 0.9948 0.9943 0.9955 0.9966 0.9926 0.9954 0.9940 0.0073 0.0033

SVC-SOM 0.9545 0.9671 0.9375 0.9540 0.9551 0.9605 0.9462 0.0448 0.0459

SAE-MLP 0.9745 0.9996 0.9969 0.9977 0.9994 0.9987 0.9982 0.0005 0.0022

CSE-CICIDS-2018

CNN 0.9543 0.9675 0.9763 0.9564 0.9674 0.9754 0.9676 0.03238 0.609

LSTM 0.9560 0.9620 0.9490 0.9564 0.9556 0.9592 0.9523 0.0443 0.0435

CNN-LSTM 0.9448 0.9243 0.9555 0.9666 0.9743 0.9654 0.9567 0.0015 0.0033

SVC-SOM 0.9545 0.9671 0.9375 0.9540 0.9551 0.9605 0.9462 0.0448 0.0459

SAE-MLP 0.9775 0.9796 0.9469 0.9677 0.9894 0.9787 0.9582 0.0007 0.0042

SDN-Dataset-2020

CNN 0.9874 0.9875 0.9873 0.9890 0.9855 0.9883 0.9864 0.0144 0.0109

LSTM 0.9560 0.9620 0.9490 0.9564 0.9556 0.9592 0.9523 0.0443 0.0435

CNN-LSTM 0.9948 0.9943 0.9955 0.9966 0.9926 0.9954 0.9940 0.0073 0.0033

SVC-SOM 0.9545 0.9671 0.9375 0.9540 0.9551 0.9605 0.9462 0.0448 0.0459

SAE-MLP 0.9975 0.9996 0.9969 0.9977 0.9994 0.9987 0.9982 0.0005 0.0022

Table 5.6 shows the performance of the different deep learning algorithms on various public

datasets discussed above. The different datasets contain an unequal and varying count of attack

classes present. These datasets are used by researchers for attack detection but are not generated

for SDN and are rather created for the traditional networks.

The datasets created for the traditional network have certain features which are not applicable

in an SDN environment. Data exploration is done to understand the data, the number of instances

in each class of traffic, Normal and malicious traffic distribution in the dataset. This summary

data helps to comprehend the dataset. Figure 5.6 shows the distribution of the benign traffic in

the dataset. Similarly, the distribution of attack traffic in the dataset is depicted in Figure 5.7.

From the Figure, it can be inferred that the dataset is not biased towards a particular class and it

is a balanced dataset.

The different performance parameters are also calculated and comparative evaluation results
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Figure 5.6: Percentage of Normal traffic present in the Proposed dataset.

Figure 5.7: Percentage of Attack Traffic present in the Proposed dataset.
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Figure 5.8: Classification Accuracy achieved with CNN-LSTM Model.
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Figure 5.9: Classification loss incurred with the CNN-LSTM model.
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Figure 5.10: Classification Accuracy achieved with SAE-MLPModel.
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Figure 5.11: SAE-MLP Reconstruction loss

are presented. Figure 5.8 depicts the accuracy score of 98.8% achieved by the CNN-LSTM

model plotted against the number of epoch. The hybrid CNN-LSTM model has achieved sig-

nificant accuracy as the hybrid of CNN which detects the significant features and LSTM which

predicts the class label worked well after amalgamation. Figure 5.9 shows the cross-entropy

loss decreases with an increase in the epoch. It shows that as the number of times the model is

trained on the dataset, the error in classifying the traffic decreases.

Figure 5.10 shows that the accuracy score of 99.75% is achieved by the hybrid Stacked

autoencoder-Multi-layer-Perceptron model (SAE-MLP) which used the MLP model in com-

bination with SAE and attains the highest accuracy. The MLP model suffers from the curse-

of-dimensionality problem and autoencoders work to reduce the dimensionality problem. Fig-

ure 5.11 shows the SAE Reconstruction loss where the loss in reconstructing the input image has

reduced within 160 epochs with the use of two different optimizers. Stochastic gradient Descent

and Adam optimizers are used for 10 and 150 epochs respectively.
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Figure 5.12: SOM Plotted for TCP data out of the complete dataset.

Figure 5.12 shows the SOM plotted for the TCP data of our dataset. The color bar shows the

mean inter-neuron distance where the higher value indicates a homogenous cluster and lower

values indicate the less homogenous cluster. ’x’ value represents the malicious traffic and ’o’

value represents the benign traffic. At first, the Linear SVCs classify the flow entries from

OpenFlow switches. The Linear Support Vector Classifier learns a linear decision boundary

accompanied by two margin lines equidistant from the decision boundary, to classify points

from two classes. However, depending upon the separating hyperplane and the width of the

margin learned by the SVC, some data points may lie within the two margins. These data points

can be misclassified as the region is allowed to encompass points from both classes. So for

the data points lying within the two margins, called suspicious points, inference from SOM is

used for the final classification. When we tried three different SOMs along with three different

SVCs for each protocol, we found that the SAE-MLP yields more accurate results at the cost

of a greater training time. But SOM attains less accuracy score of 95.45% as compared to the

supervised algorithm of SAE-MLP which attains the highest accuracy with the SDN dataset.

This may be due to the unsupervised nature of the algorithm used.

It is similar to clustering algorithms popular in data mining literature, although the method

employed is very different. The clusters learned by the SOM also depend upon the neighboring

clusters(neurons) in the map. This neighborhood is determined by the initial radius set for the

SOM, which decays over time. The training process should be stopped when changes made
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Figure 5.13: ROC Curve Plotted for the different ML algorithms.

in the map start becoming minimal or insignificant. There are deeper details relating to the

various hyperparameters employed. Figure 5.13 depicts the Receiver Operating Curve (ROC) of

various algorithms used to detect a DDoS attack. The area under the curve (AUC) demonstrates

the classifier’s ability to differentiate between different classes. The greater the AUC value,

the better the classifier’s ability to distinguish between positive and negative classes. The AUC

value of 99.99 for SAE-MLP indicates the classifier’s significance performance. The SAE-MLP

classifier employed for classification plays a significant role in attack detection as the hybrid of

SAE-MLP model attains significant accuracy.

The proposed dataset can be evaluated for other ML algorithms as the dataset is publicly

available. But the hybrid of SAE and MLP achieves significant results with the chosen hyper-

parameters.

The proposed approach is compared to existing research work in Table 5.7. The existing

highest result shows an accuracy score of 99.10% and the SAE-MLP model with the proposed

dataset shows an accuracy score of 99.73%. The SAE-MLP classifier followed plays a signifi-

cant role in attack detection as the hybrid of SAE and MLP model attains significant accuracy.
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Table 5.7: Proposed work vs State-of-the-art Research

S.No Authors Testing Accuracy

1 Wang et al. [1] 99.10%

2 Agarwal et al. [99] 95.35%

3 Niyaz et al. [18] 95.65%

4 Phan et al. [68] 97.6%

5 Abdulqadder et al. [100] 80%

6 Sambangi et al. [101] 97.86%

7 Proposed 99.73%

5.3.2 Observation and Discussion

In this segment, we will critically analyze the performance of the results obtained. The dataset is

created using the SDN emulator ’mininet’and is available online. In our previous work, different

machine learning algorithms have been trained on the dataset, and a classification of the traffic

has been performed. Out of the various machine learning classifiers used, the hybrid model of

Support vector Classifier with Random Forest achieved the highest accuracy of 98.8% in traffic

classification [39]. Although a good classification accuracy has been achieved with machine

learning algorithms, many deep learning algorithms were showing promising results in this area

of traffic classification. So, the dataset is trained with different deep learning algorithms in the

proposed work.

Various supervised and unsupervised learning algorithms have been trained and tested on the

given dataset. But unsupervised algorithms show relatively low classification performance as

compared to supervised algorithms. This may be due to the training of the unsupervised learning

algorithm leads to underfitting and does not provide significant results. As can be seen, the SAE-

MLPmodel achieves significant results as MLPwhich is a supervised algorithm is trained on the

given dataset which is later fed to SAE which is a form of self-supervised learning algorithm for

dimensionality reduction and thus optimized well on the classification task. On the other hand,

Self OrganizingMaps(SOM) is an unsupervised learning algorithm that cluster the data instances

based on the neighbor clusters. The area covered by neighbors is determined by the initial radius

which decays over time. As the proposed work is done using an experimental dataset that is

emulated on the mininet emulator, the trained deep learning model can be applied in real-time

to detect the attack with approximately 100 percent accuracy. Previously, attack detection is

done by using statistical approaches, which involve calculation of the various parameters, and
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depending on the value of parameters, the attack detection is performed.

5.4 Summary

SDN emerged as a revolutionary network for the future which relates to the flexibility require-

ment of the future network. In this chapter, we have extended the work of DDoS attack detec-

tion with Deep Learning algorithms. The public datasets for traditional networks contain only

a subset of the features which is common between traditional architecture and SDN, because of

which even the best classifier is not able to attain significant classification results. Among the

various algorithms used, the hybrid model of StackedAutoEncoder with Multi-layer perceptron

achieved the higest detection accuracy of 99.73%.

Some facts about the different security attacks have been captured in previous chapters.

Based on these facts, a few conclusions are drawn in the following chapter. The following

chapter also suggests future work for the reader.
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CHAPTER 6

CONCLUSIONAND FUTUREWORK

SDN provides an exclusive chance to pursue the dynamic network requirements while also deliv-

ering the best, customizable, and dependable solutions. A secure network is required to achieve

this more effectively. The preceding chapters present novel solutions for detecting DDoS and

ARP-based attacks. This chapter will provide concluding remarks and future directions for re-

searchers in the domain of SDN Security.

SDN (software-defined networking) has revolutionized the networking industry and com-

pletely transformed the networking domain. In a traditional network, the devices are configured

manually, which is error-prone and inflexible for larger networks. SDN assists in programming

the network and thus automatically configuring the network. However, in addition to the numer-

ous benefits provided, SDN is vulnerable to various attacks due to the centralized architecture.

Network attacks occurring in SDN could indeed be similar to traditional network attacks

such as DDoS attacks. But the way of detecting and preventing such attacks becomes different

in SDN. For effective attack detection, an application needs to be written thatdeveloped in a

traditional network environment checks for the attack condition. The previous work done for

DDoS attack detection has not yielded significant results and remains a challenge. Secure net-

work communication is difficult to imagine without reliable data link layer host identification

process. ARP-based host discovery is carried out at the data link layer. Attacks such as ARP

Poisoning and Flooding are possible. The literature on secure communication between hosts is

deficient. Various gaps in the literature about these attacks are identified, i.e., insecure, if secure,

then costly in terms of computation and processor load.

The thesis makes five major contributions: Creating an SDN-specific DDoS attack Dataset,

Creating an ARP-Poisoning and ARP-Flood Attack Dataset, Detection of DDoS attack by ap-

plying Deep Learning Techniques and, Traffic classification intoARP Poison, Flood attack, and

benign traffic classes. Few conclusions can be drawn from each such contribution.
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1. Previous research did not address the development of SDN-specific datasets. The author

addressed the issue and created an SDN-specific DDoS dataset for network traffic clas-

sification. The public datasets available for traffic classification in SDN are either not

available for free download or are developed in traditional network environment.

2. Since there has been very little research into ARP-based attack datasets, the development

of datasets is required for research in the SDN environment. Dataset is also created for

ARP Poison and flood attack and is utilized by machine learning algorithm for traffic

classification.

3. The results attained in detecting DDoS attack was found to be best with a hybrid model

of Support Vector Machine with Random Forest. The previous research in DDoS attack

detection is either based on statistical technique or pattern matching but ML technique

offers a promising solution.

4. The detection of DDoS attacks has been improved by using Deep Learning algorithms,

which yielded higher accuracy. Deep Learning algorithms automatically extract the sig-

nificant features present in the dataset, which can aid in more accurately classifying the

attack traffic.

5. The hybrid model of Convolution Neural Network with Longest Short Term Memory

(CNN-LSTM)was found to have a significant detection accuracy in detectingARPPoison

attack andARP Flood attack. ARP-based attacks are also common in SDN and can result

in MITM and DoS attacks. The author also used machine learning techniques to detect

the ARP-Poison and Flood attacks, with promising results.
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6.1 Future Scope

After dedicating a considerable amount of time collecting statistics andmaking judgments in any

research, there is always room for improvement. In addition, the thesis suggests a few future

directions for making host discovery and resiliency to DDoS, ARP-based attacks. Some of the

thesis’s future scope are discussed below:

1. Other attacks related to Topology Poisoning attacks which include Link Fabrication At-

tack, Link relay attack, and Host Location Hijacking attack can also be undertaken by

future researchers. The SDN- specific dataset can be created for each of these attacks and

network traffic classification can be done with state-of-the-art algorithms.

2. On current deployments, several attacks such as DDoS, ARP Poison, and ARP Flood are

evaluated using Ryu Controller. There are many other controllers in SDN such as POX,

OpenDayLight, Floodlight, and other SDN controllers ONOS, Beacon, and HPE-VAN.

Each of the aforementioned controllers can be assessed for vulnerability to one or more

of the aforementioned attacks.

3. The controller assumes that all knowledge gained is legitimate. If the controller is mali-

cious, it is far more difficult to stop, diagnose, or lessenARPPoison, Flooding, and DDoS

attacks. The detection of such a case becomes interesting.

4. Flow statistics, port statistics, and other flow parameters, are scheduled tasks in research

to create the dataset. Experiments are still needed to determine the best time to collect

statistics. Selecting the best time will reduce overhead and end up making the network

less vulnerable to malicious activities.

5. A generalized dataset could be generated that tackles all kinds of possible attacks in SDN

networks.
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