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ABSTRACT 

 

Plants are repertoire of bioactive chemical entities. The current knowledge of biosynthetic 

routes in medicinal plants are mostly based upon target based molecular biology approaches, 

therefore, only partial information is available. The recent developments of Next Gene 

Sequencing (NGS) have generated high quality datasets that have provided key components 

related to various biological functions particularly in medicinal plant species. The last decade 

has resulted in development of some special computational tools to do high throughput analysis 

pin-pointing components representing functional modules.                                                                         

The gene co-expression networks are one such strategy based on the concept of graph theory 

that represents the relationship between genes based on gene expression in different 

circumstances i.e., tissue specific, temperature, disease phenotypes, etc. The current study 

focused on unravelling the complexity of the biosynthesis of iridoid glycosides in 

hepatoprotctive medicinal herb Picrorhiza kurroa. Furthermore, comparative gene co-

expression-network analysis among transcriptomes derived from different tissues/ organs 

varying for iridoid glycosides pinpointed major hubs of acyltransferases belonging to BAHD-

ATs. The study also developed a computational approach aimed at identification of SNPs 

through GBS analysis in a collection of 41 Picrorhiza kurroa populations, followed by 

construction of gene co-expression networks and mapping those SNPs to functional modules 

(hubs) capturing their functionality.  Overall outcome of study has practical implications in 

designing genome engineering strategy for controlled production of iridoid glycosides.  
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Introduction  

Secondary metabolites produced by plants include terpenoids, alcohols, alkaloids, acids, 

flavonoids, lignin, peptides, and others that are vital for growth and defence response processes 

[1] [2]. In response to external stimuli, the secondary metabolites biosynthesise occur through 

intricate interactions of several routes, modules, genes, enzymes, transcription factors, and 

transporters [3]. Every plant produces secondary metabolites of different classes, thus the 

biosynthetic machinery is also specialised according to distinct chemical entities [4]. Exploring 

each portion of the overall machinery is crucial to understand the overall biosynthetic process 

of a particular class of secondary metabolites. [5]. In order to address the complexity of 

biosynthetic machinery, several methods from molecular biology, biochemistry, genomics, 

genetics, and computational biology were utilized [6]. Recent developments in next generation 

sequencing in the fields of genomics and transcriptomics have made it possible to use genetic 

resources to unravel secondary metabolite biosynthesis complexity in ways that were 

previously unaddressed by conventional experimental methods. More crucially, it has provided 

chances for plant species with  few genetic resources or no sequences [7].  Over the last 

decade,  various diverse computational techniques have been developed for high-throughput 

analysis to pinpoint the components that constitute functional modules [8]. One such method 

based on the idea of graph theory is the gene co-expression networks, which depict the link 

between genes based on expression in different situations, such as tissue-specific, temperature, 

disease phenotypes, etc [9]. The fundamental idea behind this technique is to conceptualize 

global prespective of gene-gene interactions that take place to carry out overall system-level of 

functioning [10]. The "guilt-by-association" technique used in this strategy, which bases 

evaluation of the connectivity among gene relationships on the numerous functionalities, 

emphasises extremely relevant components in terms of interactions, differential expression, and 

functional relevance [11]; i.e., comparable gene expression profiles being observed across 

many RNA sequencing (RNA-seq) samples. This theory suggests that genes may link biological 

activity together. By comparing co-expression patterns across different plant species, 

computational analysis of gene co-expression networks can be used to determine important 

connections between regulators and targets, predict structural genes in metabolic pathways, and 

transfer gene functional annotations  [12]. In a recent study, the biosynthesis of catechins, 

theanine, and caffeine in the tea plant, Camellia sinensis, was successfully evaluated using co-
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expression modules, and multiple hub genes that control the production of  three metabolites  

[13], [14] . 

The creation of weighted gene co-expression networks from the transcriptomes of the medicinal 

plant Dioscorea nipponica allowed the identification of gene modules with characteristics 

related to dioscin control and production [15]. Using RNA-seq and co-expression network 

analysis in Soybean genotypes, potential genes for coumestrol biosynthesis and accumulation 

have been discovered [16]. New TFs and microRNAs were discovered as a result of the creation 

of composite networks of overlaying maps of co-expression of berry-specific regulators of the 

phenylpropanoid pathway  [17]. A comparative study of 12 tissues from German and Roman 

chamomile was utilised to discover modules related to terpenoid and ester compounds using 

weighted gene co-expression networks [18]. Modules associated with variation in phenolics 

have recently been identified in barley transcriptome by weighted gene co-expression network 

analysis [19]. The transcriptomes of three grape species were analysed using a weighted gene 

co-expression network, which revealed 17 modules and two unique Anthocyanin levels, 

developmental phases, species, and regulation associated with the genes known as basic helix 

loop helix (bHLH) genes [20]. To comprehend the co-expression of various factors that occur 

collaboratively in the form of a network, capturing important hubs and interacting genes, the 

concepts of complex network theory are introduced in the current study. Thus, this approach 

will capture all potential important and interacting components at the complete system level of 

the medicinal herb Picrorhiza kurroa, not simply enabling comprehension of the system (in 

particular, morphological or biochemical phenotypic) components individually.  

Medicinal herb, Picrorhiza kurroa endemic in the North-Western Himalayas is widely used in 

the preparation of various herbal drug formulations  [21]–[23]. The medicinal and 

pharmacological value of herb has been reported as a hepatoprotective, neuroprotective, anti-

oxidant, anti-tumor, anti-inflammatory and anti-diabetic activity, which have been attributed to 

iridoid glycosides (picrosides), primarily Picroside-I and Picroside-II [22], [24], [25].  

Picroside-I is biosynthesized in shoots and Picroside-II in roots, thereafter both accumulate in 

stolons/rhizomes [26],  which are major constituents of herbal drugs and also extracted as pure 

compounds. Kutkin, a compound made up of kutkoside and picrosides, is the plant's bitter and 

most active component  [27]. P-I and kutkoside mixtures in certain ratios are typically necessary 

for hepatoprotective herbal medicine compositions  [28]. Picrorhiza kurroa roots and rhizomes 

are used in the Ayurvedic herbal treatments Arogyavardhini, Tiktadya ghrita, Jatyadi ghrita, 
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Punarnavasava, and Nimbadi churna to treat skin conditions, ulcers, liver disorders, 

hyperacidity, and stomach issues [26]. Formulations based on picrosides, including Livplus, 

Livomyn, Livocare, Livotrit Forte, Tefroliv, and Picroliv, are commercialised and marketed by 

a number of biopharmaceutical companies, including BACFO Pharma, Dindayal Aushadhi Pvt. 

Ltd., TTK Pharma Pvt. Ltd., Zandu Pharma, and DIL Limited. Aucubin, geniopicroside, 

geniposide, verproside, and swertiamarin are among the various iridoid glycosides found in 

Picrorhiza kurroa [29]–[31]. This suggests that Picrorhiza kurroa is an important plant species 

for studies on the biosynthesis of iridoid glycosides. Picrorhiza kurroa is one of 242 plant 

species with a large yearly commerce, according to the National Medicinal Plants Board 

(Ministry of Ayush, Government of India). There is minimal room for recovery via vegetative 

reproduction in Picrorhiza kurroa's natural habitats due to the steadily rising demand for herbal 

raw materials, particularly its roots and rhizomes [28]. The accumulation of these metabolites 

is influenced by environmental and genetic factors with the latter consisting of biosynthetic 

machinery components, kinases, transcription factors, pathway genes, and transporters. The 

primary goal of previous research on Picrorhiza kurroa has therefore been to create shoot 

culture platforms for the production of picrosides, either through metabolic engineering to 

increase and redirect metabolic flux to Picroside-I and Picroside-II biosynthesis or to optimise 

in vitro growth parameters of biomass that are similar to those found in natural habitat field 

conditions. [28], [32]–[35]. Trans-cinnamic acid individually shifts flux towards both p-

coumaric acid and Picroside-I biosynthesis, whereas trans-cinnamic acid combined with 

catalpol directs maximal flux toward Picroside-I formation.[33]. These biochemical studies 

have shown that in order to increase endogenous picroside levels, Picrorhiza kurroa genes must 

undergo multistep engineering steps. Additionally, it has been suggested that it would be 

advantageous if P-II could be biosynthesized and stored in the shoots alongside P-I in order to 

lessen or even prevent the uprooting of Picrorhiza kurroa. [28]. Biosynthetic pathway of 

picrosides has been deciphered in Picrorhiza kurroa [7,8,13] wherein geranyl diphosphate 

formed from non-mevalonate (MEP) and mevalonate (MVA) pathways undergoes cyclization 

to form iridoid moiety which further condenses with a glucose molecule to form boschnaloside, 

which finally gets converted to catalpol by side chain modifications. P-I is formed by addition 

of a cinnamate moiety from the phenylpropanoid pathway to the sugar of catalpol, while P-II is 

formed by the addition of vanillic acid to the geranyl diphosphate backbone of catalpol [28], 

[33], [35]. Enzyme inhibitor and differential gene expression studies as well as molecular 

characterization approaches have deciphered crucial pieces of picroside biosynthetic 
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machinery, such as elucidation of route to geranioldiphosphate biosynthesis and 

characterization of two glucosyltransferases responsible for glucosylation of iridoid in 

Picrorhiza kurroa [35]–[37]. Reports on in-depth dissection of differential picrosides 

biosynthesis by organ-specific gene expression [32], [37] analysis of primary metabolism in 

picrosides accumulation [36], and identification of transcription factors (TFs) of picroside 

biosynthesis pathway [38] have further appended pieces of picrosides biosynthetic machinery. 

Hence, In the last decade approaches to pinpoint major components affecting the biosynthesis  

of Picroside-I and Picroside-II have been highlighted but leaving interactions among 

components undiscovered [28], [39], [40]. Apart from Picrosides, Boschnaloside, Aucubin, 

Bartsioside, Mussaenosidic acid, Deoxygeniposidic acid, and Geniposidic acid are among the 

iridoid glycosides that have been identified to be transitional substances in the catalpol 

biosynthesis pathway. Catalpol, an iridoid backbone of picrosides, is used to synthesise other 

iridoid glycosides by esterifying acyl groups (cinnamoyl, vanilloyl, p-coumaryl, benzoyl, etc.) 

to it. [41], [42]. In the instance of the biosynthesis of picrosides, blockage of the enzymes 

involved in the iridoid and shikimate/phenylpropanoid pathways has affected the total flux of 

picrosides by resulting in a shortage of the precursors for the iridoid backbone or acyl donors. 

[41], [43], [44]. Moreover, role of acylation in iridoid glycosides, including Picroside-I and 

Picroside-II is very important where acylation of catalpol via trans-cinnamoyl-CoA and vanillic 

acid occurs with the help of anthocyanin acyltransferase (ACT) leading towards picroside 

production [35]. The acylation of secondary metabolites biosynthesis has been considered as 

one of the most prominent and important steps in decorating final structures [45], [46]. This 

particular step is mainly executed by acyltransferases especially BAHD-acyltransferases [45]. 

The BAHD-acyltransferases (BAHD-ATs) particularly acylate using acyl-CoA thiosters (acyl 

donor), hence decorating last step modification of secondary metabolites [45]. BAHD 

acyltransferases are involved in the production of a number of secondary metabolites, including 

Montbretin, Spermidine, and other Phenolamides. Several molecular biology techniques have 

been used to identify and characterise BAHD-ATs, including molecular cloning, enzyme 

purification, transcriptome profiling, biochemical characterisation, and expression profiling  

[47], [48].   

Furthermore, Single Nucleotide Polymorphisms (SNPs) specific towards secondary 

metabolites biosynthesis were extracted and mapped onto gene co-expression networks through 

a novel approach. The study has provided a unique strategy of gene co-expression networks 

that can also be implemented even in other species and domains of next generation sequencing 



6 
 

analysis. The variations in contents of  Picroside-I and Picroside-II have highlighted the 

differences in their biosynthesis and accumulation under specific tissue, environment, and 

experimental conditions [32], [49]–[52]. Pandit et.al [32] highlighted different developmental 

stages and organs varying for picrosides .  Furthermore,  variations in picrosides contents have 

also been shown due to change in the geographical region [49]. As most of the herbal raw 

material is collected from wild or partly grown by farmers, thus warranting those genetic 

markers, preferably SNPs be developed from components of biosynthetic machinery. 

Molecular markers such as ISSR, AFLP and RAPD have been reported among populations of 

Picrorhiza kurroa using DNA finger printing strategies [49], [53]–[55]. however, such 

anonymous molecular markers can be  present either in expressed  or non-expressed regions of 

the genome [56]. Development of genetic markers such as SNPs could provide specificity 

provided derived from genes/transcripts with major role in the biosynthetic machinery of 

picrosides.  

Therefore, to uncover interaction modules involved in the biosynthesis and accumulation of 

iridoid glycosides in a medicinal herb Picrorhiza kurroa three objectives were designed that 

have been discussed below. Firstly, we undertook approach based on gene co-expression 

networks analysis to unravel components of iridoid glycosides biosynthetic machinery of 

Picrorhiza kurroa, which were not captured through conventional molecular biology 

approaches. However, a coordinated visualization of transcriptional regulation of iridoid 

glycoside biosynthesis is still lacking, which can only be discerned through co-expression 

networks generated from whole-genome differential transcriptomics of different organs of 

Picrorhiza kurroa. 

Secondly, we performed comparative gene co-expression-network analysis among 

transcriptomes derived from different tissues/ organs of Picrorhiza kurroa varying for contents 

of iridoid glycosides to pinpoint major hubs associated with BAHD-ATs. Our analysis also 

captured other components co-expressed with major Acyltransferases hubs, which provided us 

leads towards novel edges possibly contributing towards other components of biosynthetic 

machinery.  

Third, we reported a computational approach aimed at identification of SNPs through GBS 

analysis in a collection of 37 Picrorhiza kurroa populations, varying for picrosides contents in 

roots, shoots, and stolons, followed by construction of gene co-expression networks and 

mapping those SNPs to functional modules (hubs) to capture their functionality viz-a-viz 

components of biosynthetic machinery.  The effort of mapping specific SNPs on the transcripts 
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highlighted the presence of variation in the expressed regions of Picrorhiza kurroa.  The key 

components containing specific SNPs were further highlighted using this novel approach. This 

resulted in identification of SNPs encompassing key components based of the high/low 

Picroside accumulation. Hubs containing population specific SNPs lying in the population 

specific gene co-expression network were shortlisted.  

 

Research Gaps 

 Which functional modules in networks are associated with the components of 

biosynthetic machineries of secondary metabolites biosynthesis in Picrorhiza kurroa? 

 Can a novel strategy be developed to not only capture the functional modules in gene 

co-expression networks but also to map SNPs to functional modules/ hubs? 

 

Research Objectives 

 Build gene co-expression networks using NGS-transcriptome datasets of different 

organs/tissues and developmental stages of Picrorhiza kurroa  

 Extract and prioritize co-expression modules contributing to secondary metabolites 

biosynthesis in Picrorhiza kurroa 

 Identification and mapping of single nucleotide polymorphisms (SNPs) to the global 

co-expression networks 
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2.1. Background 

Plants have been utilized for diverse purposes to nourish the ecosystem by producing bioactive 

molecules with different chemical scaffolds [57].  Apart from being  producers of a major share 

of food, the plants have essentially been consumed for pharmaceutical or nutraceutical purposes 

for ages [58]. These purposes are evident from the use of plants as medicine in the traditional 

methods of Ayurveda, Unani, Siddha, and traditional Chinese medicines [59]. In the modern 

scenario, the effectiveness of treatment approaches against diseases like cancer, diabetes, and 

fatty liver disease has led to the economic development of the herbal drug industry [60]–[62]. 

In India, almost 80% of the rural population has utilized traditional methods of treatment [63]. 

The global nutraceutical market has reached global trade in the billions of dollars with a rising 

growth rate every year [58]. The medicinal values of plant lies in the specialized biosynthetic 

machinery that yield various  specialized secondary metabolites of diverse categories of 

terpenoids, alcohols, alkaloids, acids, flavonoids, lignin, peptides, etc [2]. The biosynthesis 

includes interaction of different biomolecule at various levels of pathways, genes, enzymes, 

transporters and transcription occurring in the systematic manner [3]. Therefore, to unravel the 

overall biosynthetic machinery such components are needed to be studied through various 

approaches of molecular biology, genetics, genomics, biochemistry, and computational biology 

[6].  The advances in Next generation sequencing analysis have enabled to pin-point the 

complexities by generating datasets of genomes, transcriptomes, and proteomes that cover 

everything globally [64][65].  Moreover, such approaches are highly compatible with those 

species in which less or no genomic resources are available [7]. Along with the combination of 

computational tools the researchers can reveal transcriptional complexities occurring for 

complex functionalities such as biosynthetic pathways [66]. The gene co-expression network 

analysis is widely used strategy that can highlight key components based on the linkage between 

genes and can also associate with functionally unknown genes through a network based 

identification  [67].  This review of literature has widely been focused on the strategies 

uncovering key components in various functional modules in plants. The various studies in 

identification of functional system of medicinal herb Picrorhiza kurroa were also addressed in 

this section. Additional recent developments in Next Generation Sequencing analysis were 

taken into consideration, and they provided solutions to the complicated research problems in 

the contemporary scenarios.  This section has also covered a quick discussion of network-based 

techniques and various resources utilized for the same.  
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2.1.1.  Iridoid glycosides of Picrorhiza kurroa  

As discussed previously, medicinal values of north-western Himalayan herb Picorhiza kurroa 

are in the specialized metabolites of various chemical classes. Iridoid glycosides are one such 

chemical class[68]. These basically monoterpene structures synthesised form 10-oxogernial 

that result in iridoid ring formation. The overall reaction is catalysed by iridoid synthase 

enzymes [69]. In Picrorhiza kurroa various specialized metabolites with catalpol backbone 

have been reported [28], [42] (Figure 2.1). Strategies to identify key components for such 

biosynthesis phenomena have been implied in the medical herb in last decade [28]. These 

strategies were mostly focused on two major iridoid glycosides namely Picroside-I and 

Picroside-II. Initially studies of HPLC analysis of  tissue culture and field grown samples have 

shown differential accumulation in overall picroside content with change in temperature   [51]. 

Furthermore, reporting of 15 pathway genes have shown direct or indirect relation with 

picroside accumulation [70]. These gene pathways  were from two major biosynthetic pathways 

of MEP and MVA [70].  Difference in the protein expression have also been reported in the 

accumulating and non-accumulating conditions [71]. This lead to the designing of biosynthetic 

pathway with some gaps at last steps and intermediates through detection of biochemical 

intermediates by combination LC ESI and MS/MS techniques [42].  In another study expression 

analysis of key gene such as HMGR, PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL were 

noted in differential tissue specific and picroside accumulating conditions [69].  Studies 

focusing on specific functional component such as transcription factors , miRNA and pathway 

enzymes have been implemented throughout [40], [72]. Various biomarker studies based on 

the. Furthermore, in past various NGS based studies have also been reported. This include 

generation of NGS-transcriptomes with differential picroside accumulation [73]. Comparative 

transcriptome analysis for pathway specific transcription factors have also been reported  [38]. 

Furthermore recent studies of gene paralogues, transporters and transferases have shown 

potential in  revealing the overall biosynthetic route in the plant [74]–[76]. Furthermore, the 

first genome of Picrorhiza kurroa has also been reported recently that can answer new questions 

that are not only related to iridoid glycosides but also for other growth and development 

functions [77] 
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Figure 2.1: Different classes of iridoid glycosides with catalpol backbone structure 

2.1.2. Biomarker studies in Picrorhiza kurroa 

The advances in plant breeding technologies have resulted in molecular breeding strategies that 

give low cost and high productivity[78].  Today, biomarker based diagnosis have led to crop 

improvement to breed species that sustain complex environmental conditions [79].  Molecular 

marker-based breeding has been achieved in model crop species that are associated with strong 

phenotype linkage the biomarkers. Some of the strategies of DNA finger printing have direct 

applications in the domain of molecular marker identification. Techniques such as RAPD, 

RFLP and SSR have direct applications in the biomarker identification [80].  These technique 

have also been implemented to identify the picroside specific biomarkers in Picrorhiza kurroa 

[49], [54], [55]. However, these techniques  provide anonymous markers having chances of 

either present in expressed regions or not [81]. The development of Single Nucleotide 
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Polymorphism (SNP) based on the genome sequencing have highlighted the new ways to 

identify biomarkers related to phenotypic characteristics [82].  

2.2. Developments in Next Generation Sequencing analysis 

Previously developed sequences strategies of first generation were updated to more capable 

technologies known next-generation sequencing (NGS). These technologies were efficient 

enough to generate millions of reads without affecting the cost as compared to previous 

methods. In recent years these technologies have unveiled tremendous opportunities for data 

analytics that can aid the various fields of biological sciences [83] 

2.2.1. Next generation sequencing 

These technologies have gained immense popularity in the last decade due their cost effective 

and broad generation of datasets that can be analysed through customized analysis approaches 

and pipelines [83], [84]. Since, the single run generated millions of reads it is also important to 

care of error prone NGS runs through refinement strategies available in the form NGS-analytic 

pipelines. Furthermore, to compute such large amount dataset efficiently the role of high 

computing hard systems with parallel computing is also relevantly very important. Furthermore, 

it is also important to choose the NGS sequencing strategies wisely that should be based on 

availability of resources, datasets in public domain, the kind of reads required for the overall 

analysis subjected towards the problem [85]. 

2.2.2. Transcriptome sequencing 

The complete set of RNA expressed to perform various functions is termed as transcriptome. 

The transcriptome is extremely complicated and contains several coding and noncoding RNA 

species. Historically, according to the fundamental tenet of molecular biology, RNA molecules 

were merely an intermediary between genes and proteins. Because they used the genetic code 

to encode proteins, messenger RNA (mRNA) molecules were the most widely investigated 

RNA species [86]. The transcriptome sequencing provide more insights at  gene expressions 

and give assumptions of the final gene production in respect to external factors. 

 Advancement in the high-throughput sequencing technologies has transformed the field of 

transcriptomics by providing high quality transcriptome dataset through complementary DNA 

sequencing techniques [87]. Such tools are termed as RNA-seq studies that has successfully 

determined various questions that are sought to be answered. Successful applications of RNA-
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Seq include mapping exon/intron boundaries, confirming or revising previously annotated 5' 

and 3' ends of genes, and precisely quantifying transcript levels.  [88]. It describes a thorough 

bench-ready procedure for creating RNA-seq libraries for high-throughput pair- or single-end 

sequencing that is compatible with the Illumina sequencing platform [87]. The RNA-seq can 

be implemented through  various sequencing platforms [89].  Some of the widely used 

commercially available platforms are Roche 454, PacBio, Illumina/ SOLiD, Nanopore and  

Helicos. These platforms used various sequencing approaches giving varying outcomes in term 

of reads length, quality, error, and cost effectiveness. Therefore, it is always important to choose 

the platform according to the study for which it has been utilized [89].  Among these Roche454 

and PacBio are best known for longer reads generation when  compared with illumina that 

generates reads only few hundred bases[89], [90].  

Table 2.1: Comparison of various NGS Platforms. 

Platform Read length  Data Output Run time 

Illumina 150x2 PE 100 GB – 3 TB 29hrs- 4 days 

Ion torrent 200-400 SE 60 MB- 50 GB 2.5 hrs-19 hrs 

PacBio RS 3000 -15000 3 GB 20 min 

454 GS  

FLX (Roche) 

700 0.7 GB 23 hrs 

SOLiD 

(Life) 

85 15 GB 8 days 

 

2.2.3. Computational analytics of NGS data 

The dataset generated by such diverse strategies of NGS technologies have enabled the 

generation of new tools and software to analyse the dataset by using various computational 

implementations [91]. These tools are categorized based on the sequential usage to refine the 

dataset. The purpose of quality control, assembly/ reference sequence alignment, denovo 

annotation of unknown sequences, visualization, and quantification are included in these 

categories. Furthermore, tools are used in combination popularly known as pipeline in which 

process of providing subsequent output is executed [91]. Most of the NGS platforms also 

provide their in-house tools and software for processing NGS reads output for downstream 

processing. Some of the software representing a particular component of pipelines are discussed 

as under.  
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2.2.4. Quality control and trimming  

The sequence raw reads generated by various NGS platforms are million in numbers therefore 

probability of being error prone is always a matter of concern [91], [92].  Quality score provided 

by the platforms are statistical values showing probability of error for each base in a particular 

raw read. The base-calling error probabilities, denoted by P, are used to calculate the Phred 

quality score, denoted by Q, which is specified as 10 Q P = 10log. For instance, a Q30 value 

shows that accuracy is 99% and the likelihood of an inaccurate base call is 1 in 1000 [93]. The 

phred score criteria changes with respect the sequencing platform form which the raw reads are 

generated.  The data filtering includes quality control and refinement based on the base call 

phred scores. Softwares like FastQC [94]and Trimmomatic [95]are widely used for this 

purpose.  The refine goo quality read were taken further for the downstream analysis to get 

preferable outcomes.  

2.2.5. De novo assembly  

Following sequencing, millions of fragmented readings must be combined in accordance with 

the organism's chromosomes, requiring complex computations. With the advent of NGS 

platforms, read sizes shrunk, outperforming several current assemblers based on overlap 

graphs. A few of the significant assemblers are Trinity [96], ABySS [97], Velvet [71] , and 

SOAPdenovo [71]  

 Due to overlapping graphs' inability to scale properly with rising read volumes, some of them 

use the well-known directed graphs known as de Bruijn graphs (advance overlap graphs). The 

reads are divided into fewer subsequences by k-mer in De Bruijn graphs. It adopts the strategy 

of joining together non-intersecting pathways into a single node. K-mer must be optimised for 

various values of k since it is not a fixed parameter for assembly. Depending on the size of k, 

different values of k result in various assemblies. To compare the quality of assemblies made 

with various k-mer, various measures are employed. 

Two crucial metrics are as follows: 

1. N50 value - The N50 value is the lowest size contig among larger contigs that can cover 50% 

of the transcriptome or genome. 

2. Coverage - The proportion of nucleotides in the reference genome that are covered by 

assembled contigs. It can only be determined if a reference genome is available. 
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2.2.6. Functional annotation  

Once the assembly is done it is important to annotate the assembled sequence by alignment 

strategies. Alignment is used to map the assembled nucleotide sequences in fasta format against 

various known databases[98]. Alignment tools such as BLAST [98], [99] and PLAST[100] are 

map assembled sequences against known databases. NCBI maintains the Nr (non-redundant) 

protein sequence database, which includes entries from a number of sources. Identical 

sequences from both curated and uncurated databases are combined into a single sequence in 

this extensive database. The prerequisites for merging two sequences are that they have the 

same length and contain the same residues throughout. A fasta signature (>) identifies each 

unique sequence, and control-A characters denote the separation of common sequences. By 

aligning the contigs or CDS to NCBI's non-redundant (nr) protein database, this database is 

most frequently utilised for functional annotation. The biological roles of freshly sequenced 

transcripts must be identified in detail in order to be used for downstream biological analysis. 

2.2.7. In silico transcript abundance  

We now have the benefit of deeply sequenced RNA-Seq data thanks to recent advances in next-

generation sequencing technology (mRNA sequencing). Microarrays have been replaced by 

RNA-Seq, a technology that is in use today [91]. Through the use of massively parallel 

sequencing, cDNAs that correspond to an RNA fragment are translated into millions of short 

reads. For other transcriptome investigations, such as the de novo transcript assembly, these 

short reads can be used. It can directly take transcript sequences as an input for instance the 

transcripts produced by de novo transcriptome assembler. The counts to in silico expression 

profiling can be measured in: 

 Reads Per Kilobase per Million Mapping Reads, or RPKM The formula for this level 

of measurement is RPKM= C/N*L. N stands for "Total number of mappable reads (in 

millions)," L represents for "Length of feature (in kb)," and C is for "Number of 

mappable reads on a feature (e.g., transcript, exon, etc.)." 

 FPKM, or fragments per kilobase of transcript per million fragments mapped, is an 

acronym. It is similar to RPKM but uses transcript fragments rather than read counts. 

  Transcripts Per Million is referred to as TPM. It is defined as :-  

TPM= (106 )* Z *(C/N*L)  

Where additional Z parameter has been used to combat normalization factor [48].  
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2.3. Biological networks 

The biological system consists of complex interaction between different entities of 

biomolecules such as gene, protein, mRNA, metabolite, etc. To understand such complication 

in globally the network-based approach is a widely accepted strategy to understand various 

levels of functions. The principles of graph theory are applied in understanding  such complex 

systems [101]. The network or graph is a representation of components termed as nodes 

interaction with each other based on a particular relationship to form as linkage or an edge. The 

data analytics  of  high-throughput technologies like micro-arrays and RNA sequencing have 

lead toward system level identification of participating components [101], [102].  Such 

technologies have assured annotation of  different levels of biological functions [103]. 

Networks are one of such approaches that identifies target based on the  concept of “guilt by 

association”  [102].  Therefore, it is always important to identify which component among the 

network module explains the behaviours of the system represented. Such key components are 

considered to be hubs for the network as they are frequently connected with most of the 

components by forming an edge [104].  Some of the types of biological networks are protein-

protein interaction (PPI) network [105], metabolic network [105], genetic interaction 

network[106], gene/ transcriptional regulatory network [107] and cell signalling networks 

[108]. These categories were organized on different level of biological molecule such as gene, 

mRNA, protein, and metabolite interacting to perform functional modules that can be further 

categorized.  

  

Figure 2.2: Different categories of biological networks 
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2.3.1 Protein-Protein Interaction networks 

PPI networks act as the overall framework of signalling route, that is regulated by 

environmental relationship toward cellular and genetic response [105].  The availability of large 

scale protein interaction information have enabled the study of protein interactions [109]. The 

study of the interaction between proteins have enabled us to deal with the three dimensional 

structural complexity by  focusing on the interaction again stimuli [110].  Capturing interaction 

module can enable the modular design toward mechanism of action i.e. transport, enzymatic 

function, signalling and regulation [111], [112]. This information can be retrieved to various 

data resources designed especially for PPI networks. Some of the examples are STRING [113], 

GeneMANIA [114], FunCoup[115], I2D[116] and ConsensusPathDB[116]. 

2.3.2 Metabolic networks 

Metabolic network is a network that comprises of interconnected biological pathways of  

chemical reactions performing metabolic activities necessary for cellular actives [117]. The 

biosynthesis of various chemical entities are end products of such metabolic networks[118]. 

The metabolites are specialize chemical entities that varying structurally, functionally, 

quantitatively and qualitatively from different species therefore found to be specialized [119]. 

Therefore,  structural design of such metabolic network is important to understand the overall 

system of the organisms[65]. Some of the known information of the template metabolic 

pathways can be retrieve from various data resources such as KEGG[120], Reactome [111] and 

MetaCyc.  

2.3.3 Gene interaction networks 

It consist of a groups inter-connecting through functional relationship such as co-expression, 

ontology, similar function etc [121].  The gene interaction is an important aspect of 

understanding the relationship between genotype and phenotype [122].  The immense 

generation of Next Generation Sequencing dataset have created new questions in the varying 

genetic interactions with change in external stimuli [9]. Gene interaction network that 

represents interactions based on similar series of gene expression are known as gene co-

expression network [9].  
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2.3.4 Gene/ transcriptional regulatory networks 

Instructions for biological development and physiological reactions are encoded by 

transcriptional regulatory networks (TRNs). Recent improvements in computational modelling 

and genomic technology have transformed our ability to create models of TRNs [107]. 

Responses to intrinsic and environmental cues are closely regulated by a number of 

transcription factors (TFs). Gene regulatory networks (GRNs), which serve as a blueprint for 

the transcriptional controls driving development and environmental responses, are composed 

of these transcription factors (TFs) and their regulatory links [123]. 

2.3.5 Cell signalling networks  

Networks of signalling pathways that connect receptors to various cellular machinery are 

created when signalling pathways come together. These networks process information in 

addition to receiving and transmitting signals. To comprehend how information is processed 

and how input-output linkages are established, computational models must be used because of 

the complexity of these networks [108] 
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Chapter 3 

MATERIALS AND METHODS 
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The materials and methods have been described in following heads: 

 

3.1.  Dataset information 

To achieve the objectives proposed in current study various datasets of transcriptomes and GBS 

raw reads of multiple accessions of Picrorhiza kurroa were utilized. The obtained datasets were 

processed through different NGS assembly pipelines, data visualization tools and software that 

would be discribed in the forthcoming sections. In short, a total number of 13 transcriptomes 

with different picroside contents, geographical regions, tissues, and experimental conditions 

were use in the study. The various NGS pipelines and protocols for library preparation, quality 

control, assembly, annotation, and quantification produced various outcomes. These outcomes 

were taken as inputs for further downstream analysis that includes generation and visualization 

of gene co-expression networks, identification of key components based on differential 

expression and functions of genes, sub-network extraction, and mining and mapping SNPs.   

 

3.1.1. Transcriptomes dataset 

Initially five transcriptomes from different tissues and experimental conditions were considered 

for the objective 1 and 2. These sample were previously quantified by HPLC for Picroside-I 

and Picroside-II concentrations [51]. These five samples were namely PKS-15 (Shoots grown 

at 15oC), PKS-25 (Shoots grown at 25oC), PKSS (Field grown shoots), PKSTS (Field grown 

stolons) and PKSR (Field grown roots) (Table 3.1). Shoot samples of both experimental and 

field grown conditions PKS-15, PKS-25 and PKSS were exclusive for Picroside-I and root 

sample PKSR only accumulates Picroside-II. whereas, both Picroside-I and Picroside-II were 

found to be reported in the stolon sample, PKSTS. In addition to that 8 transcriptomes reported 

by Varun et al [28] represented variation in accessions for Picroside-I and Picroside-II 

accumulation. The location of these samples was Hudan Bhatori, Moral Danda, Teita, Pattal 

Tissa, Dhel, Moral Danda, Salam Tith and Sural Bhatori annotated with unique accession code 

of PKS-1, PKS-5, PKS-4, PKS-21. PKST-3, PKST-5, PKST-16 and PKS-18, respectively. 
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Table 3.1: Transcriptome samples of Picrorhiza kurroa differing for growth, development and picrosides contents. 

 

. 

Table 3.2: Transcriptomes of Picrorhiza kurroa 
available for various geographical locations 

S. No. Picrorhiza kurroa 
Accession ID  

Location 
  

1. PKS-1  Hudan Bhatori 

2. PKS-5  Moral Danda 

3. PKS-4  Teita 

4. PKS-21 Pattal Tissa 

5. PKST-3  Dhel 

6. PKST-5 Moral Danda 

7. PKST-16 Salam Tith 

8. PKST-18  Sural Bhatori 

 

3.1.2. Library preparation of transcriptome dataset 

TRIzol Reagent (Invitrogen), RNeasy Mini Kit (Qiagen) and other kits were used to extract 

whole RNA from each sample. Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, 

CA, USA), NanoDrop (Thermo Fisher Scientific Inc.), and a 1 percent agarose gel were used 

to measure and quantify the total RNA in each sample. For the subsequent library preparation, 
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1 g of total RNA with RIN value higher than 7 was employed. The NEBNext® UltraTM RNA 

Library Prep Kit for Illumina® was used to create the next-generation sequencing libraries in 

accordance with the manufacturer's instructions. According to its effective concentration and 

anticipated data volume, the eligible libraries were fed onto HiSeq 2500 sequencer. This 

resulted in the generation of transcriptome raw reads, which were taken further for quality check 

analysis.  

3.1.3. De novo transcriptome assembly  

Transcriptome raw reads generated in the form of Fastq were further evaluated based on the 

quality control using FastQC [94]. Raw reads with adapters, N>10% and Qscore ≤ 5 were 

eliminated from further process of assembly using trimmomatic [95]. BinPacker[124], 

IDBA[125], and rnaSPAdes [126] were used to assemble cleaned raw reads from each unique 

transcriptome. The normalisation pipeline utilised was BBNorm from the BBMAp[127] 

package. The kmer lengths of 31, 25 and 60 were considered for BinPacker, rnaSPAdes and 

IDBA respectively. To filter and identify authentic transcripts, concatenated assemblies from 

each of these tools were taken. The transfuse programme 

(https://github.com/cboursnell/transfuse) was used to get transcript quantification by aligning 

clean reads with assembled transcriptome data after the true transcripts were initially identified 

using the evidential gene packages:tr2aacds.pl  tool [128]. These outcomes were assembled 

sequence with larger sequence length considered to be termed as transcript.  

3.1.4. Functional annotation of assembled transcriptomes 

In order to find similarities between query sequences and huge databases, the annotation of the 

assemblies was carried out using PLAST [100], a tool based on seed-based heuristic algorithm  

against primary database libraries of NCBI, Uniprot etc. For gene, evolutionary, and functional 

annotation of the transcriptome, the eggNOG  [129] database was utilised. GO [130] and KEGG  

[131]  updated versions were utilized for functional enrichment of each dataset based on 

structural and functional annotations. 

3.1.5. Extraction of expressed transcripts  

The Transcript expression calculated in the form of quantification values according to 

Transcript per million reads (TPM) were caried out with the help of Salmon tool [132]. Each 

transcriptome sample transcripts with TPM value greater than zero were considered as 

expressed for the study. Transcripts sequence identifiers were extracted from the spreadsheet 
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of complete assembly using MS Excel.  To extract the sequence from the list of identifiers of 

transcripts sequences Samtools faidx [133] was used to pooled out desired batch of sequences 

of interest (Figure 3.1) 

 

3.1.6.Mapping transcripts to other corresponding transcripts 

Each set of expressed transcripts was mapped with all other transcriptome sets by local 

standalone version of BLASTn[98]. The threshold criteria for mapping were 1-e09 evalue, 

greater than 75% query coverage and greater than 95% identity. Each individual set of 

transcripts was taken as query and all other sets were considered as subject and included in 

pooled form.The resulting tabular outcomes were further verified by match identity for each 

matched transcripts pairs of different transcriptomes samples (Figure 3.1).  

 

Figure 3.1: Flow diagram for the network generation and visualization. 
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3.1.7.Generation of gene expression matrix  

Matched pairs of transcripts of each set of transcript sequence were represented in the form co-

expression matrix of each individual transcriptome. The matrices generated from each 

transcriptome represented differential expression profiles (TPM) of each expressing transcript 

of that sample. The name of rows represents transcript identifier and column names consist of 

sample ID. Five gene expression matrices with TPM values greater than 0 were the outcome of 

this step.  

3.1.8. Network generation and visualizations  

The networks of co-expression were generated using GENIE3[134] Package of R.  GENIE is 

based on tree approach for regulatory network having multifactorial values of genes ranking 

the probable interaction in the form of link-list. Here the multifactorial information of co-

expression from the mapping of transcript pairs were taken as input. For generation of link list 

default tree method “ensemble” with K (Number of candidate regulators randomly selected at 

each tree node) value 7, and the number of ensembles were set at 50. This generated a link list 

showing complex pairs of interaction ranked based on a connectivity score. The link list of 

connectivity score >0.005 were extracted from the generated link list. This resulted in 

generation of individual link list representing individual transcriptome same. The filtered linked 

list with optimum value of connectivity score, were considered as pairs of transcripts showing 

co-expression or interactions. These interactions were visualized in the form of co-expression 

network using the Cytoscape Network visualization tool. Network analyser was utilized to 

calculate number of interactions of each transcript represented in the network in the nodes, 

hence degree of freedom of each node was calculated.  For representation of differential gene 

expression on the network, donut and pie chart were used as style showing relative expression 

among transcriptome samples.  Nodes size and colours were styled based on the degree of 

freedom and expression in individual transcriptome condition. The generated network 

represents overall global system of transcriptomes therefore in order to analyse the networks 

toward the function of interest, subnetworks were generated.  

3.1.9.Generation of subnetworks of gene co-expression. 

Gene enrichment based on various levels of ontologies using GO enrichment [130] weas taken 

for the generation of subnetwork. The subnetwork based functional class of annotation for 

iridoid glycoside biosynthesis and acyltransferases were used as key to extract similar 
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functional annotation. Nodes showing interaction with such functional interest were also 

extracted. This resulted in the generation of sub network representing key functions of interest. 

 

3.2  Visualization of acyltransferases related networks  

The subnetworks representing acyltransferase function were extracted from each global co-

expression network to achieve the analysis. Apart from this similar style based on the degree of 

freedom with node size and pie chart representation based on differential gene expression were 

represented for these subnetworks. The comparative subnetworks analysis was done among the 

transcriptome samples to determine the commons with different interactions (Figure 3.2). The 

potential candidates were captured based on the function as a acyl group donor proposed to be 

decorating final structures of iridoid glycosides.  

3.2.1 Capturing acyltransferases based on involvement in co-expression networks 

The individual and comparative network analyses served as the foundation for network 

visualisations. Transcripts with the greatest degree of flexibility and expression in the network 

were found using individual network analysis, which examined the total interactions and 

expression of each node. Contrary, in a comparative study, the same network was examined for 

common nodes with a comparable class of acyltransferase function across various 

transcriptome samples based on their differential expression and distinctive relationships. The 

nodes involved in the biosynthesis of iridoid glycosides and those with distinctive interactions 

were chosen, and MEGA was used to compare their sequences for further elimination of 

redundancies. [135]. Based on alignment score, a phylogenetic tree was created, and sequences 

with longer sequences were chosen from each branch. The potential acyltransferases were taken 

forward for molecular modelling and docking analysis. 
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Figure 3.2: Schematic workflow depicting generation and utilization of comparative co-

expression networks leading to identification of acyltransferases transforming final 

modification of iridoid glycosides. 
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3.2.2 Molecular modelling and docking  

Transeq (https://www.ebi.ac.uk/Tools/st/emboss transeq/) was used to translate the selected 

transcripts' nucleotide sequences, and Pfam (http://pfam.xfam.org/) was used to identify the 

frames that included acceptable acyltransferase domains. The ab-initio technique of I-Tasser 

was utilised to construct 3D structures utilising sequences composed of acyltransferase domains 

(https://zlab.umassmed.edu/bu/rama/). The models that showed the best Z-score, Qmean, and 

C-value were chosen as the final candidates. Additionally, in the Swiss PDB viewer, the energy 

reduction of most of the optimal structures was done. Following that, acyl group-donating 

ligands for the special iridoid glycoside (Figure 3.3) were acquired from PubChem, and Marvin 

sketch was used to create their three-dimensional (3D) conformations. AutoDock Tools 

(http://autodock.scripps.edu/resources/adt) were used to construct the structures of proteins and 

ligands with acyl groups that were shortlisted. Using AutoDock vina[136], six modelled 

proteins were individually tested against each of the acyl-group ligands (Figure 3.2). The 

outcomes were attained using several protein-ligand complex conformations that were rated 

according to their binding affinities. More than -7 kcal/mol was classified as bad binding 

affinity, while conformations with binding affinities of less than -9 and -7 kcal/mol were rated 

excellent and good, respectively. So, for each acyltransferase that was modelled, possible 

ligands were chosen. 
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Figure 3.3: Structural transformations of acyl-moieties through BAHD-acyltransferases via catalpol towards 

formation of iridoid glycosides. 

 



29 
 

3.3  De novo GBS assembly and library preparation  

Picrorhiza kurroa tissue samples were obtained from the nursery of the Himalayan Forest 

Research Institute in Jagatsukh, Kullu, Himachal Pradesh, India. Here, populations gathered 

from various North-Western Himalayan geographical regions were planted and maintained to 

to minimise the impact of environment and reflecting only the genetic differences. Data from 

each population's HPLC analysis were received from previous studies [52], [137]. For the 

purpose of building co-expression networks and identifying SNPs, HPLC data populations were 

divided into high and low picroside content populations. For the GBS study, the tissue samples 

from each group were also taken into consideration (Table 3.3). TES and C-tab techniques were 

used to extract the whole genomic DNA from each sample. Each sample's total DNA was 

measured and qualitatively analysed using nanodrop and a 0.8 percent agarose gel. DNA 

samples were added to individual adapter-containing tubes at a concentration of 10 ng/l. 

Following that, the materials in a 20-litre container were digested with ApeKI enzyme (New 

England Bio Labs, Lipswitch, MA). To ligate adapters to sticky ends, T4 ligase was employed 

in each well at the proper concentration. Double-purified digested DNA samples with unique 

barcode adapters were created using AMPure XP beads. The pooled DNA fragments from each 

library were then amplified in a 50-liter container that also contained 25 pmol of each common 

PCR primer, 1x Taq Master Mix (New England Bio Labs), and 10 ng of pooled DNA fragments 

(these primers contained complementary sequences for amplifying restriction fragments with 

ligated adapters, binding PCR products to oligonucleotides that coat the Illumina sequencing 

flow cell and priming subsequent DNA sequencing reactions). The library was cleaned with 

AMPure XP beads to get rid of unused dNTPs, enzymes, and other impurities. The PCR-

enriched library was quantified using Qubit 3.0 and evaluated in an Agilent Technologies 4200 

tape station system using high sensitivity d1000 screen tape in accordance with the 

manufacturer's instructions. The SE illumina library was loaded onto NextSeq 500 for cluster 

creation and sequencing using 1X 150 bp chemistry after the Agilent Tape Station profile was 

used to determine the Qubit concentration for the libraries and the mean peak size. The quality 

of the raw readings generated from the samples was examined using FastQC. The data quality 

was assessed according to the base and read phred scores.  
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3.3.1. Identification of Single Nucleotide Polymorphisms (SNPs) 

The picroside content of each unique raw read library of populations was further processed for 

SNP detection. Using Process radtags, the restriction site and barcodes were verified. Reads 

were demultiplexed and trimmed using the following parameters: a final read length of 120 bp, 

a phred33 quality score, a score limit of 10, the apeKI enzyme, the adaptor 

"ACACTCTTTCCCTACACGACGCTCTTCCGATCT," and an illumina filter to reject reads 

that was unacceptable. In a de novo pipeline, each stack component was sequentially run using 

default settings for the ustacks, cstacks, and sstacks. [138], [139]. Consequently, a library of 

fragments was created with a probable SNP frequency based on their existence in many 

populations. Based on the amount of picrosides in each sample, two population groups were 

created. The total samples were split into two groups of populations with high and low 

picrosides concentration. This served as the starting point for the SNP population analysis, 

which produced a segment of SNP frequency found in high/low populations. For further 

Figure 3.4: Systematic workflow for SNPs identification in GBS dataset, mapping to co-expression networks and identification of 

key components of various functional modules in Picrorhiza kurroa. 
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mapping of SNPs on the transcriptome dataset, fragments specific to high and low populations 

were aligned to different transcriptome datasets.  

3.3.2 Mapping SNPs to gene co-expression networks 

Fragments from the de novo assembly of populations' GBS data were aligned to the 

transcriptome dataset using BLASTn with more than 95% query cutoff and identity. A high or 

low score, indicating the population of the fragment, was assigned to each transcript mapping 

with SNP encompassing fragment. Each mapped node was assigned a unique colour. The global 

gene co-expression network's transcripts and associated edges were retrieved together with the 

GBS segments to which they were linked (figure 3.4). 

3.3.3 Analysis of functional module from gene co-expression network 

Transcripts with certain GO keywords were produced from the transcriptome dataset. These 

transcripts were used to extract functional modules, including edges of various functions, using 

the prey-bait approach. In samples containing different concentrations of picroside, these 

functional modules were contrasted (Figure 3.4). 

3.3.4 Categorization of the GBS sample based on the PI and PII concentration in Shoot, 

roots and Stolons. 

GBS samples were categorized in two different groups of high and low Picroside content in 

root, shoot and stolon. The rationale for grouping the population is to divide the dataset 

uniformly into two categories. The two populations of relatively high and low picroside content 

were divided for each set of tissue whereas the GBS sample with relatively moderate picroside 

content was not considered for further network analysis network analysis. The reason for not 

considering the moderate picroside content containing sample was to divide the samples in to 

two distinct populations with no intermediate relationship. (Table 3.3).  
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Table 3.3: Distribution and picrosides contents of 37 populations of Picrorhiza kurroa representing different 

geographical regions of Himachal Pradesh. 
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CHAPTER 4 
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4.1. Gene co-expression networks using NGS-transcriptome datasets of 
different organs/tissues and developmental stages of Picrorhiza kurroa 
 

4.1.1.  Reads generation and De novo sequence assembly  

Experimentally cultured samples of shoots at temperatures of 15◦ C (PKS-15) and 25◦ C (PKS-

25) showing lesser Picrosides content compared to field-grown shoots suggested that in vitro 

stress response could be identified in these transcriptomes [140]. The tissues of shoots (PKSS), 

stolons (PKSTS) and roots (PKSR) grown in natural conditions contained higher amount of 

Picrosides [3–5]. In accordance with RNA-seq results for PKS15, PKS25, PKSS, PKSTS, and 

PKSR Illumina paired-end sequencing produced 51,756,778, 45,410,214, 44,340,806, 

43,672,124, and 47,689,140 raw reads respectively (Table 4.1). For PKS15, PKS25, PKSS, 

PKSTS, and PKSR, the number of raw readings that were trimmed and cleaned and qualified 

for further processing was 49,670,218, 43,726,396, 42,261,006, and 41,707,042 respectively, 

(Table 4.1). PKS15, PKS25, PKSS, PKSTS, and PKSR final assembled transcript counts were 

129,865, 105,475, 150,566, 244,558, and 167,453, respectively (Table 4.1). 

Table 4.1: Reads generation and de novo sequence assembly. 

Sample 
ID 

Transcripts annotated Predicted 
gene 
name 

GO 
terms 

KEGG 
Terms 

eggNOG 
annotation 

PKSS 150556 40117 6774 21774 18095 37352 
PKS15 129865 47726 8526 27019 22069 44064 
PKS25 105475 44958 8030 25453 20627 41622 
PKSTS 244558 66979 7532 23868 19726 62166 
PKSR 167453 55578 6713 21526 17808 51720 
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4.1.2. Functional annotation of P. kurroa transcriptomes 

EggNOG [129] was used as a resource database to construct orthology predictions for 

transcriptome assemblies that had been annotated using PLAST [100] at various taxonomic 

levels. From latest versios  GO and KEGG pathway databases, groups of orthologs were 

subsequently functionally annotated [130], [131].This led to the actual transcript annotation of 

PKS15, PKS25, PKSS, PKSTS, and PKSR (Figure 4.1). From hits in the Uniprot database, 

unigenes from PKS15, PKS25, PKSS, PKSTS, and PKSR, were retrieved in the numbers 8526, 

8030, 6774, 7532, and 6713 respectively. Following, GO annotation, assembled sequences from 

PKS15, PKS25, PKSS, PKSTS, and PKSR, respectively, yielded 27019, 25453, 21774, 23868 

and 21526 transcripts (Figure 4.2). 

Figure 4.1: clustering of annotated transcripts of Shoot, Stolon and Roots of P.Kurroa as per 
their length in base pair. 
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Additionally, KEGG database annotation identified 22,069, 20,627, 18,095, 19,726, and 17,808 

transcripts, from PKS15, PKS25, PKSS, PKSTS, and PKSR respectively, (Figure 4.3).  

Figure 4.2: Top GO categories of transcripts of shoot, stolon and roots of P. kurroa at Molecular function, 
biological process and cellular component levels of Gene Ontology. 

 

Figure 4.3: Top KEGG categories of transcripts of shoot, stolon and roots of P. kurroa at functional levels of KEGG Orthology.
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Each of the five transcriptomes under analysis contained roughly 16% of annotated transcripts 

per million reads (TPM) values greater than zero. (Figure 4.4). Thus, only a small fraction of 

the RNA-seq dataset accounted for expression above zero TPM value.  

 

Workflow of network formation and visualisation, illustrating global visualisation of organ-

specific transcriptional regulation of picrosides production and biomass discussed briefly in 

Chapter 3. Finally, five distinct global co-expressed network modules were created using 8176, 

8335, 8206, 7789, and 8402 unique transcripts from the RNA-seq data of PKS15, PKS25, 

PKSS, PKSTS, and PKSR, respectively. (Figure 4.4, Figure 4.5) 

Figure 4.4: Distribution of the dataset with TPM expression value greater than zero in the five transcriptome samples. 
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The number of nodes in these global co-expressed network modules were 2779, 2657, 2929, 

2712, and 2972 for PKS15, PKS25, PKSS, PKSTS and PKSR, respectively (Figure 4.5). 

Further, the number of edges in these network modules were 16,165, 16,156, 14,527, 15,360, 

and 15,923 for PKS15, PKS25, PKSS, PKSTS and PKSR, respectively (Figure 4.5).  

4.1.3. Comparative co-expression network analysis 

For comparing co-expressed genes between any two or three transcriptomes discussed in this 

study, iridoid glycosides mainly from monoterpenoid background were considered, and GO 

terms aptly describing terpenoids and glycosides were extracted and mapped among the 

Figure 1 Figure 4.5: Distribution of nodes and edges for PKSS, PKS15, PKS25, PKSR, PKSTS followed by GO 
enrichment for identification of key component among the networks. 
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networks, thus generating a distribution of nodes and edges (Table 4.2). Pair-wise comparisons 

describing unique and common nodes in these five transcriptomes have been mentioned in 

Tables 4.3 and 4.4. Co-expressed gene sub-networks of terpenoid glycosides generated from 

the global networks (Figure 4.5) aided us in assessing links between biosynthesis of iridoids at 

the organ-specific transcriptome and metabolome levels.  

Table 4.2: Distribution of nodes and edges in corresponding samples specific to 
terpene glycosides biosynthesis. 
 
Sample Nodes Edges  
PKS15 148 253  
PKS25 189 253  
PKSS 236 235  
PKSTS 152 271  
PKSR 132 117  

 

Table 4.3: Pairwise comparison of transcripts in PKS15, PKS25, and PKSS.  
Sample for Comparison Unique Common 

PKS15 v/s PKSS (336*) 
109 in 
PKS15 

199 in 
PKSS 

28 

PKS25 v/s PKSS (367*) 
140 in 
PKS25 

189 in 
PKSS 

38 

PKS15 v/s PKS25 (288*) 
110 in 
PKS15 

151 in 
PKS25 

27 

* Transcripts present in either or both samples. 
 
 
 
     
Table 4.4: Pairwise comparison of transcripts in PKSTS, PKSS, and PKSR. 
Sample for Comparison Unique Common 

PKSTS v/s PKSS (337*) 
110 in 
PKSTS 

196 in 
PKSS 

31 

PKSR v/s PKSS (318*) 
91 in 
PKSR 

186 in 
PKSS 

41 

PKSTS v/s PKSR (245*) 
113 in 
PKSTS 

104 in 
PKSR 

28 

* Transcripts present in either or both samples. 
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4.1.4. Comparative co-expression network analysis between the shoot-only systems 

The interactions that were common between PKS15 and PKS25 have been pictorially presented 

in (Figure 4.6), while the interactions found unique and specific to either PKS15 or PKS25 have 

been presented in Figure. 4.7 and 4.8, respectively. Table 4.5 is descriptive listing of Figure 4.6 

Thirty-six common interactions have been observed between PKS15 and PKS25 terpenoid 

glycoside sub-networks. The major hubs detected based on intense swarming of connected 

interactions are a group of TFs and the auxin response factor. The common node-wise 

interactions between PKS15 and PKS25 have highlighted auxin responsive interactions (Auxin 

response factor, Transport inhibitor response proteins, and Scarecrow-like proteins), 

Figure 4.6: Common interactive sub-network modules between PKS15 and PKS25. Area of colours 
represent differential expression. 
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Comparison of averaged differential gene expression of nodes present in the common network 

interactions between PKS15 and PKS25 revealed 8.5 fold higher expression of Endoglucanase 

in PKS15 compared to in PKS25, while expression of Cellulose synthase-like genes was 12.2 

fold higher in PKS25 compared to PKS15. The major interactions from terpenoid glycoside 

sub-network that were unique to PKS15 and PKS25 were compared. The major unique hubs in 

PKS15 that were identified in the decreasing order of the number of interactions were SND > 

Pleiotropic drug resistance protein (PDR) > Farnesyl cysteine lyase (FCL) > CYP > Carotenoid 

cleavage dioxygenase (CCD) > Lycopene epsilon cyclase. A unique interacting hub in PKS15 

with a significantly lower expression (ash coloured) of Cycloartenol synthase (CAS) as the 

common node was also detected. Interactions that were present in PKS15 but separated from 

the other co-expressed nodes included Phytoene synthase and E3 Ubiquitin-protein ligase 

(RHA1B-like). The major unique hubs in PKS25 that were identified in the decreasing order by 

the number of interactions were CAS > Serine-threonine protein kinase (STK) > SND > CCD 

> LrgB-like family> Uncharacterized protein family> Asparagine synthetase> V-type proton 

ATPase catalytic subunit. A separate non-linked Nitrate transporter (NRT) domain was also 

identified in the unique interactions of PKS25.]. Thus, co-expression of PDR as a major hub in 

Figure 4.7: Unique interactive sub-network module of PKS15 when compared to PKS25. 
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PKS15 unique sub-network might missing in PKS25 co-expressed unique interactions. Further, 

a unique co-expressed interaction connecting a Terpene/Isoprene synthase (IS) to Tocopherol 

cyclase (terpenoid-methylated phenol interactions) and CAS have been noted in PKS15 while 

any interactions involving IS was missing in PKS25. On an average STKs were over four-fold 

upregulated and identified as the second major unique interacting co-expressed hub in PKS25.  
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Figure 4.8: Unique interactive sub-network module of PKS25 when compared to PKS15 
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Table 4.5: PKS15 vs PKS25 common modules.   
Transcript PKS15 PKS25 
ABC transporter B family member 3.202414 8.100121 
auxin response factor 7.650815 5.206076 
Beige/BEACH domain 1.19136 2.106626 
BTB POZ domain-containing protein 6.959855 3.749734 
cellulose synthase-like protein 8.00497 97.53869 
cytochrome P450 27.63615 10.94947 
E3 SUMO-protein ligase 5.575157 5.050733 
elongator complex protein 3.592034 4.218303 
Endoglucanase 29.93674 3.527784 
enhancer of mRNA-decapping protein 6.535803 4.646109 
expressed protein 5.006141 2.398221 
F-box kelch-repeat protein 5.629032 3.525826 
FYRN 3.927243 3.921058 
Glycosyltransferase 4.113697 4.817498 
HELICc 3.328089 2.437997 
homeobox-leucine zipper protein 6.291664 5.015253 
homeodomain protein 2.511032 7.566019 
serine threonine kinase 5.109808 21.18872 
LRR receptor-like serine threonine-protein kinase 5.088693 2.907978 
Pentatricopeptide repeat-containing protein 4.470103 3.901911 
peroxisomal fatty acid beta-oxidation multifunctional protein 13.19421 3.431917 
potassium transporter 3.316704 3.790901 
protein EXECUTER 1, chloroplastic-like 4.897749 4.679127 
pyrophosphate-energized vacuolar membrane proton 10.20231 16.47162 
resistance protein 4.904869 8.639097 
response regulator 4.198561 6.231456 
Scarecrow-like protein 4.02178 3.64239 
serine threonine-protein kinase 7.415561 4.686767 
Splicing factor 3B subunit 5.892997 9.321721 
Staphylococcal nuclease domain-containing protein 5.121077 6.891662 
Transcription factor 13.74189 7.362943 
transport inhibitor response 19.35024 23.45225 
WD domain, G-beta repeat 4.574745 3.685862 
zinc finger 1.59262 7.98217 
zinc finger CCCH domain-containing protein 22.05254 16.55951 
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4.1.5.  Comparative co-expression network analysis between PKS15 vs PKSS 

 We could not assess any common interactions between PKS15 and PKSS except for a common 

co-expressed interaction between PDR to RNA recognition motif. Common nodes (not 

common interactions between nodes) were included as a basis to compare PKS15 and PKSS. 

The common non-interactive nodes and respective unique interactive nodes upon comparison 

between PKS15 and PKSS have been pictorially represented in Figure. 4.9, and Figures. 4.10 

and 4.11, respectively. Table 4.4 is descriptive listing of Figure 4.9. 

 The common nodes of interest were PDR > IS > FCL > MYB family TF > CCD > CYP. Thus, 

the common nodes involved are those functional in terpenoid biosynthesis. As expected, STK 

promoting downstream ABA signalling has been downregulated 6.8-fold in PKSS compared to 

PKS15. FCL has been upregulated 2.2-fold in PKSS, Tocopherol cyclase has been 

downregulated 2.1-fold, CAS has been downregulated 1.8-fold, and PDR has been upregulated 

in PKSS. A GDSL esterase lipase was upregulated 3.6-fold in PKSS. Some of the hubs in 

Figure 4.9: Common non-interactive sub-network module between PKS15 and PKSS. 
Area of colours represent differential expression. 
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decreasing order of intensity of unique interactions in PKS15 are STK > PDR > FCL > 

Tocopherol cyclase while the major hubs in PKSS unique interactions are ABA 8′ -hydroxylase 

> IS > PDR > TF > a Gibberellin related protein. The PKS15 unique interactions comprise 2 

connected but separate co-expressed interacting hubs. 

 

Figure 4.10: Interactive unique sub-network module of PKS15 when compared to PKSS 

 The smaller network proceeds via SND to a STK to CCD to Lycopene beta cyclase to PDR or 

CYP and completes the link back to SND. The major interacting network has a closed loop via 

a NRT to a TF to CYP to CAS to a IS to Tocopherol cyclase to the NRT. In an extended closed 

loop, NRT is connected to CAS to SND to the NRT via a STK and an LRR- kinase. For an 

analytical cross-comparison, PKS25 unique interactions consisted of a single closed co-

expressed loop between a STK to a CCD to FCL to SND back to the STK. Thus, we identified 

unique interaction in PKSS with Tocopherol cyclase, CAS, CYP, CCD, and Cellulose synthase 

moved out from its closed main co-expressed loop, and major new hubs like ABA 8′ 
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hydroxylase, PDR, Gibberellin related protein, and a Beta carotene hydroxylase imported into 

the main closed co-expressed loop of PKSS. Phytoene synthase has formed a separate co-

expressed loop/ network in both PKSS and PKS15 unique co-expressed sub-networks denoting 

chlorophyll/photosynthetic metabolism while a unique Phytoene synthase co-expressed 

network was missing in PKS25 unique co-expressed sub-networks. Thus, while in PKS25 

unique interactions, a prominent co-expressed network reveals ABA biosynthesis and growth 

cessation (CAS, CCD, STK as major hubs), in PKS15 the unique network negatively regulates 

ABA biosynthesis (FCL as a major hub) and has a Phytoene synthase and Cellulose synthase 

in interactive networks which highlights its promoted growth in comparison to PKS25. 

Contrary to both PKS15 and PKS25, the field transcriptome of PKSS manages to degrade ABA 

Figure 4.11: Interactive unique sub-network module of PKSS when compared to PKS15 
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(ABA 8′ -hydroxylase as the major hub in PKSS unique sub-networks) while at the same time 

brings in gibberellin signaling in co-expressed unique networks. 

Table 4.6: PKS15 vs PKSS common modules with respective TPM   
Transcript PKSS PKS15 
armadillo beta-catenin-like repeat family protein 4.084408 1.19136 
Carotenoid cleavage dioxygenase 6.871375 6.10379 
Cycloartenol synthase 5.94054 10.78402 
cytochrome P450 6.886614 7.401911 
DNAJ heat shock N-terminal domain-containing protein 4.977611 11.5432 
E3 ubiquitin-protein ligase RHA1B-like 16.46655 12.90126 
farnesylcysteine 9.289215 4.277345 
GDSL esterase lipase 18.9391 5.306687 
interconversion of serine and glycine (By similarity) 2.247597 0.681495 
Mitochondrial 2-oxoglutarate malate carrier 6.330201 4.692952 
   
MYB family transcription factor 2.614725 5.287064 
Nucleolar protein,Nop52 containing protein 6.352651 19.46438 
Pentatricopeptide repeat-containing protein 3.924682 9.509451 
Phytoene synthase 3.9439 5.195932 
Pleiotropic drug resistance protein 7.483761 4.868731 
resistance protein 1.050992 5.735146 
Serine threonine protein phosphatase 2A 59 kDa regulatory subunit B' 2.675286 8.07069 
serine threonine-protein kinase 1.617979 11.00489 
Staphylococcal nuclease domain-containing protein 7.726296 16.34593 
synthase 5.223625 6.666108 
tocopherol cyclase 4.676084 9.588065 
Transcription factor 22.9974 7.32575 
WD domain, G-beta repeat 3.31076 4.89148 
zinc finger 4.92195 11.91645 
RNA recognition motif. (a.k.a. RRM, RBD, or RNP domain) 7.36493 6.143348 

 

 

4.1.6.  Comparative co-expression network analysis between PKSS > PKS15 > PKS25  

The common non-interactive co-expressed sub-network module between PKS15, PKS25, and 

PKSS have been pictorially represented in Figure 4.12, and listed in Table 4.7. Twenty-seven 

common nodes have been observed between PKS25, PKS15, and PKSS based on presence of 

nodes and organ-specific expression (no interactions). It can be assumed from above that the 

global co-expressed terpenoid glycoside specific sub-networks could be explained nicely based 

on interactions but were sufficiently non informative just based on the presence of co-expressed 
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nodes. Some of the prominent nodes were STK, Pentatricopeptide repeat containing protein 

(PRC), TF, CYP, IS, etc.  

  

Figure 4.12: Common non-interactive sub-network module between PKS15, PKS25 and PKSS. Area of colours 

represent differential expression. 
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Table 4.7: Distribution of TPM values of transcripts common in shoot samples 
PKS15 vs PKS25 vs PKSS 
Transcripts PKS15 PKS25 PKSS 
E3 ubiquitin protein ligase 3.743413 3.070088 1.159328 
Pentatricopeptide repeat-containing protein 9.338263 3.157428 3.583392 
Transcription factor 4.843492 9.439253 85.21287 
serine threonine protein kinase 15.33364 3.106397 4.278974 
adaptor-related protein complex 5, zeta 1 subunit 6.262103 8.64577 3.987752 
auxin response factor 6.329332 2.223681 6.421098 
zinc finger CCCH domain-containing protein 4.60228 6.919893 3.738881 
expressed protein 3.551046 8.296954 2.282987 
zinc finger 4.932892 7.841449 2.974443 
receptor-like protein kinase 2.065877 2.244506 0.609209 
cytochrome P450 27.19445 11.52195 2.515298 
zinc finger protein 2.306862 8.464385 4.016024 
ATP-dependent RNA helicase 6.460118 6.86257 3.255702 
phosphatase 2C 1.489639 9.859771 10.51774 
calcium-dependent protein kinase 8.328569 31.13009 9.268935 
LRR receptor-like serine threonine-protein kinase 4.984257 7.584049 3.568045 
Retrotransposon protein 2.345301 5.329669 3.580926 
resistance protein 1.006652 5.147355 2.245813 
tubby-like F-box protein 6.127738 7.563347 4.95621 
AAA-type ATPase family protein 5.650143 12.95124 3.296491 
RNA recognition motif. (a.k.a. RRM, RBD, or RNP 
domain) 17.14815 20.64412 18.24598 
ubiquitin carboxyl-terminal hydrolase 15.44891 7.915596 8.493643 
Ubiquitin fusion degradation protein UFD1 4.677805 8.886397 9.969154 
synthase 44.12977 3.008815 4.011906 
T-complex protein 1 subunit 4.064845 2.275716 4.609685 
FBOX 4.783053 9.390411 3.781475 

 

4.1.7. Comparative co-expression network analysis between PKS15 vs PKSTS  

Common and respective unique interactions between PKS15 and PKSTS have been represented 

in Figures 4.13 - 4.15 respectively, while their descriptive listings can be obtained from Table 

4.8. The common interactions between PKS15 and PKSTS were rare revealing massive 

differences between signalling in two organs grown under distinct conditions. Only two 

interactions, one involving a methyltransferase and the SND and the other between a STK and 

a RING domain protein were common between PKS15 and PKSTS. With almost all the 

common nodes revealing upregulation in PKS15, only the PDR was 3.3-fold upregulated in 

PKSTS. The unique PKS15 network reveals a closed loop from a NRT to a TF to CYP to SND 
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to CAS to an IS to Tocopherol cyclase closing in on the NRT. CYP is linked through co-

expression to a FCL. A LRR receptor-like serine-threonine protein kinase (LRR-STK), a CCD, 

and a Lycopene beta cyclase are linked to the NRT outside the closed network seemingly 

implying the prominent regulatory role of the co-expressed NRT in maintaining the metabolic 

balance between tetraterpenoids and apocarotenoids (eg., ABA) and other terpenoids such as 

the mono and triterpenoids. The PKSTS unique network has a closed co-expressed interacting 

loop connecting Lycopene beta cyclase via a highly expressed F-Box protein to LRR-STK, SND, 

CCD and closing the loop in Lycopene beta cyclase. While the closed loop in unique PKS15 

only had a SND specifying fine tuning of mRNA regulation, PKSTS additionally has a F-Box 

like protein associated to CCD specifying protein degradation as a major fate of the co-

expressed loop. In PKSTS unique sub-network, a co-expressed FCL is connected in series to a 

NRT that controls two wings, with co-expressed ABA 8′ -hydroxylase, and a Beta carotene 

hydroxylase on one wing and an IS, a Tocopherol cyclase, and a highly expressed aldehyde 

dehydrogenase on the other wing. Thus, NRT was eventually linked to FCL, CCD, and IS in 

both PKS15 and PKSTS unique sub-networks, but in PKSTS unique sub-network, NRT was 

additionally linked to a ABA 8′ -hydroxylase indicating ABA degradation coupled to mono and 

triterpenoid biosynthesis. Stolons have been identified as the repertoire for P-II and P-I. PDR 

transporter was not directly linked to the terpenoid networks in PKSTS, suggesting products 

formed via terpenoid networks are not transported but stored. Further, unlike IS in unique 

Figure 4.13: Common interactive terpenoid-glycoside sub-network module between PKS15 and PKSTS. 
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PKS15 networks, the IS in PKSTS unique networks was linked to a Respiratory burst oxidase 

suggesting possible involvement of reactive oxygen species (ROS) in inducing biosynthesis of 

mono and triterpenoids in stolons.  

 

 

 

 

 

Figure 4.14: Interactive unique sub-network module of PKS15 when compared to PKSTS 
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Figure 4.15: Interactive unique sub-network module of PKSTS when compared to PKS15 

Table 4.8: Distribution of TPM values of transcripts common 
in samples PKS15 vs PKSTS.   
Transcripts PKS15 PKSTS 
Carotenoid cleavage dioxygenase 5.121077 4.248048 
farnesylcysteine 5.163374 9.992099 
LRR receptor-like serine threonine-protein kinase 8.858808 1.133794 
lycopene beta cyclase 16.72553 1.956582 
Methyltransferase 4.692952 3.327606 
Pentatricopeptide repeat-containing protein 9.509451 2.262529 
Phytoene synthase 5.673829 5.219277 
Pleiotropic drug resistance protein 3.529382 11.59771 
resistance protein 8.07069 2.353269 
Retrotransposon protein 1.095883 1.336321 
RING 11.17907 2.959283 
serine threonine-protein kinase 5.484575 5.645493 
Staphylococcal nuclease domain-containing protein 19.7393 4.31855 
synthase 7.76275 6.884878 
tocopherol cyclase 12.35878 4.97656 
Transcription factor 7.32575 17.72097 
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4.1.8. Comparative co-expression network analysis between PKSS vs PKSTS  

The common interactive sub-network module between PKSS and PKSTS has been pictorially 

depicted in Figures 4.16 and listed in Table 4.9. The compact closed common interactive 

network between PKSS and PKSTS consists of an IS linked in a closed loop series to a TF, a 

STK, a FCL, and a ABA 8′ -hydroxylase closing the loop at the IS. The PDR transporter as 

expected was connected though not common to the closed loop. The IS in both PKSS and 

PKSTS have a conglomeration of co-expressed enzymes linked, suggesting biosynthesis of 

mono and triterpenoids in both shoots and stolons in field samples. The basic differentiation 

between PKSS and PKSTS unique terpenoid networks is the linkage mode of the PDR 

transporter, ie., whether the transporter is directly linked in the closed co-expressed network (in 

PKSS) or is co-expressed but not linked in the closed network (in PKSTS).  
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 Figure 4.16: Common interactive terpenoid-glycoside sub-network module between PKSS and 
PKSTS. Area of colours represent differential expression. 
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Table 4.9: Distribution of TPM values of transcripts common in 
samples PKSS vs PKSTS. 
Transcripts PKSS PKSTS 
Abscisic acid 8'-hydroxylase 1.746285 2.746312 
Beta-carotene hydroxylase 15.46688 4.690096 
Cbl-interacting protein kinase 15.08495 11.27708 
dna binding protein 2.579402 2.03751 
DUF246 domain-containing protein 4.101885 4.994395 
farnesylcysteine 9.289215 9.992099 
Galacturonosyltransferase 1.770531 4.931684 
Pentatricopeptide repeat-containing protein 3.800065 2.262529 
Pleiotropic drug resistance protein 7.493578 11.59771 
resistance protein 1.050992 2.353269 
serine threonine-protein kinase 1.486694 3.828183 
Staphylococcal nuclease domain-containing protein 7.43018 4.31855 
synthase 5.0238 6.884878 
tocopherol cyclase 4.676084 4.97656 
Transcription factor 26.87006 21.72524 
zinc finger 4.92195 2.482071 
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4.1.9. Comparative co-expression network analysis between PKSTS vs PKSR  

The common and respective unique interactive sub-network modules between PKSTS and 

PKSR have been pictorially depicted in Figure 4.17 and in Figures 4.18 and 4.19 as well as 

listed in Table 4.10. The common network between PKSTS and PKSR consists of a LRR-STK 

linked in a co-expressed closed loop with a U-box domain containing protein, a TF, a 

retrotransposon protein linked to the LRR-STK. A non-linked co-expressed methyltransferase 

with sulfate transporters, and peroxidase was found to be a unique commonality between 

stolons and roots. The non-linked co-expressed sulfate network in both stolons and roots 

suggests diminished ABA signaling as a common network characteristic. A single network of 

six co-expressed genes connected in series constitute a linked network in the unique interactions 

of PKSR. These six genes are CAS, Receptor-like protein kinase, STK, an IS, 

Phosphatidylinositol 4-phosphate-5-kinase, and a PDR. A Cation-chloride co-transporter and a 

ABC transporter B family member was identified to be co-expressionally linked to this IS. The 

transporters directly linked to the IS might be required for the import of terpenoid and 

phenylpropanoid moieties into the vacuole for the biosynthesis of picrosides. The PDR 

transporter linked to the series network might be essential to the export of picrosides to other 

organs, after biosynthesis in the roots. The unique interactions in PKSTS represent a NRT in 

three different series connected interactions. One of these series connections has a ABA 8′ -

Figure 4.17: Common interactive terpenoid-glycoside sub-network module between PKSTS and PKSR. Area 
of colours represent differential expression 



58 
 

hydroxylase, and a Beta carotene hydroxylase. The other connected series has an Aldehyde 

dehydrogenase, Tocopherol cyclase, Respiratory burst oxidase and an IS. The other connected 

series has FCL, SND, a CCD, a Lycopene beta cyclase and a ABCG transporter among others. 

It is quite probable that since the IS is not directly co-expressionally linked to any transporters 

in PKSTS unique sub-network, the NRT involved in the network transports the terpenoid moiety 

to roots for further modification of the terpenoids (acylation) and is transported back to stolons 

Figure 4.18: Interactive unique sub-network module of PKSTS when compared to PKSR. 
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for storage. Farnesyl diphosphate synthase, NRT, Ent-kaurene oxidase, Tocopherol cyclase, 

Beta carotene hydroxylase, CCD, and several other hubs were identified to exist as non-linked 

separate co-expressed small interactions.  

Table 4.10. Distribution of TPM values of transcripts 
common in samples PKSTS vs PKSR 
Transcripts PKSR PKSTS 
E3 ubiquitin protein ligase 1.818831 7.659606 
F-Box protein 2.056076 5.878629 
U-box domain-containing protein 4.310822 5.609737 
Retrotransposon protein 0.667123 1.336321 
Methyltransferase 1.141686 3.327606 
Nitrate transporter 2.181961 2.74321 
transcription factor 4.895627 25.72951 
zinc finger 6.14119 2.52747 
cytochrome P450 2.332459 23.67505 
synthase 5.246414 2.009604 
Galacturonosyltransferase 4.397389 4.931684 
Cbl-interacting protein kinase 5.983873 11.27708 
pumilio homolog 2.495526 1.837802 

 

Figure 4.19: Interactive unique sub-network module of PKSR when compared to PKSTS. 
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4.1.10. Comparative co-expression network analysis between PKSS, PKSTS, and       

PKSR. 

The common interactive sub-network modules between PKSS, PKSTS and PKSR have been 

pictorially depicted in Figure 4.20 and listed in Table 4.10. .A comparative common interaction 

analysis between PKSS, PKSTS, and PKSR has revealed a TF as the common major hub. Apart 

from genes responsible for normal maintenance of any organ, glycosyltransferases, IS, Callose 

synthase, and CYP have been identified as the common hubs (Figure 4.20). It is thus proposed 

that biosynthesis of isoprene units, its condensation and cyclization as well as addition of 

glucose moiety to the terpenoid unit are integral to all the organs under comparison. Transporter 

specific common interactions are absent in these terpenoid glycoside sub-networks, revealing 

isoprene units are mostly exported via long distance transporters after glucosylation for further 

modifications like addition of phenylpropanoid moiety, etc. Likewise, after their biosynthesis 

they must be exported to other organs or to the vacuoles via transporters for storage or for other 

functions.  

 

Figure 4.20: Common interactive terpenoid-glycoside sub-network module between PKSS, 
PKSTS and PKSR. Area of colours represent differential expression. 
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Table 4.11: Distribution of TPM values of transcripts common in  
Samples PKSS vs PKSTS vs PKSR. 
Transcripts PKSS PKSTS PKSR 
transcription factor 85.21287 1.885059 6.226975 
cytochrome P450 2.515298 10.14081 2.074169 
synthase 4.011906 16.05539 2.396971 
serine threonine protein kinase 4.278974 1.06753 6.071904 
DUF246 domain-containing protein 3.230478 4.208159 1.313394 
signal peptide peptidase-like 8.576918 2.741929 5.399903 
STYKc 3.93669 1.632868 0.874649 
FBOX 3.781475 8.461979 1.824926 
domain-containing protein 2.695508 1.351698 3.932251 
resistance protein 2.245813 2.94954 2.450717 
Pentatricopeptide repeat-containing protein 3.583392 1.355426 3.300776 
UDP-glycosyltransferase 2.311334 39.70881 1.962242 
LRR receptor-like serine threonine-protein kinase 3.568045 4.736941 2.682493 
protein ethylene insensitive 12.65049 21.46408 4.772541 
expressed protein 2.282987 5.748525 1.553024 
DEAD-box ATP-dependent RNA helicase 5.012573 4.977827 3.312039 
WD domain, G-beta repeat 3.202788 0.750093 2.458402 
cyclin-dependent kinase 1.923536 7.897478 17.95435 
KH domain 2.68719 1.262614 2.384842 
Retrotransposon protein 3.580926 1.505254 1.107837 
heat shock 7.778552 0.710258 47.9187 
U-box domain-containing protein 6.856266 8.534279 4.509818 
callose synthase 2.840461 2.063748 7.709904 
Breast carcinoma amplified sequence 3 1.397153 3.864689 1.879397 
ubiquitin carboxyl-terminal hydrolase 8.493643 23.26001 1.721892 
RING 6.120659 2.99533 1.749573 
glycosyltransferase 3.246409 3.591555 1.639171 
UBX domain-containing protein 11.68704 2.408162 0.87147 
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4.2. Co-expression modules contributing to secondary metabolites 
biosynthesis in Picrorhiza kurroa 

 

4.2.1. Structural analysis of individual co-expression networks highlighting 

acyltransferase function in different samples 

The prey-bait strategy was used to extract acyltransferase networks with identified potential 

functions from global networks. This resulted in individual networks primarily representing 

acyltransferases and other transcripts, forming co-expression nodes. Eventually, 5 sub-

networks were visualized, PKS-15 was observed least complex with only 60 nodes and 47 

edges, whereas PKSR showed the highest complexity with 173 nodes and 167 edges in 

comparison with other samples. Among PKSTS, PKSS and PKS25, 125 and 142 nodes with 

121 and 134 edges were observed in PKSS and PKS-25 respectively, whereas PKSTS had the 

lesser no. of edges (104) and nodes (115) (Table 4.10). The nodes with the maximum degree of 

freedom in PKS15, PKS25, PKSS, PKSTS, and PKSR ranged from 8 to 12 for above samples, 

deemed as hubs (Table 4.12). Based on the expression of interactive nodes in individual 

acyltransferase network highly expressing nodes other than acyltransferase were also captured, 

possibly playing significant role in the individual system. The results from this analysis revealed 

following observations in different samples. In PKS15, it was observed that “transketolase” and 

“chromosomal maintenance protein” were showing 3-fold higher expression whereas, 

“Universal Stress protein”, “ATP-dependent Clp protease”, “ATP-binding subunit clpA 

homolog”, “transcription factor (WRKY24)”, “ion channel” showed 2-fold higher expression 

than the average mean of 7.08 TPM (Transcripts Per Million) of nodes in the network (Figure 

4.21). 
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In the case of PKS25, average TPM value was 8.08 and it was observed that edges annotating 

as “Heat shock cognate 70 kDa”, “1- deoxy-D-xylulose 5-phosphate reductoisomerase”, “Two-

component response regulator-like”, “PB1, amine oxidase”, “ATP-dependent Clp protease 

ATP-binding subunit”, “Cyclophilin type peptidyl-prolyl cis-trans isomerase/CLD”, “delta1-

 Figure 4.20: Global co-expression network of acyltransferases extracted for P. kurroa tissue 
culture shoots grown at 15oC (PKS15). 
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pyrroline-5-carboxylate”, “G-type lectin S-receptor-like serine threonine-protein kinase”, 

Figure 4.21: Global co-expression network of acyltransferases extracted for P. kurroa tissue culture 
shoots grown at 25oC (PKS25). 
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“RNaseH family protein”, and “subtilisin-like” had 2-fold higher expression (Figure 4.21). The 

average TPM for PKSS was 8.27, and the “late embryogenesis abundant protein”, “beta-

glucosidase”, “glutamine synthetase”, “protein transparent testa”, “fructose bisphosphate 

aldolase”, and “glyoxylate” showed >3-fold expression to average (Figure 4.22). 

In stolon sample, the average TPM value for transcripts was 8.01, “Polyphenol oxidase”, 

“amine oxidase”, “hydroquinone”, and “cytochrome P450” connecting edge trasncripts showed 

3-fold higher expression to the average. On the other hand, “Cbl-interacting protein kinase”, 

“peptide methionine sulfoxide reductase”, and “NAC domain” showed >2-fold expression 

(Figure 4.23). 

Figure 4.22: Global co-expression network of acyltransferases extracted for P. kurroa shoots grown in 
natural field conditions (PKSS). 
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The overall average TPM value for the PKSR sample was 5.9, and the edge transcripts such as 

“Glutamate decarboxylase”, “basic region leucine zipper motif 53”, “Heat shock cognate 70 

kDa”, “EIN3-binding F-box protein”, and “4-hydroxy- 3-methyl but-2-en-1-yl diphosphate” 

showed >3 fold expression compared with the average whereas “ZnF_C2HC”, 

“phosphoenolpyruvate carboxykinase”, “UDP-glucuronate 4-epimerase”, 

“Digalactosyldiacylglycerol synthase 1”, “tryptophan synthase”, and “L-ascorbate oxidase” 

showed 2-fold higher expression to the average (Figure 4.24)  

Figure 4.23: Global co-expression network of acyltransferases extracted for P.kurroa stolons from plants 
grown at natural field conditions (PKSTS). 
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Figure 4.24: Global co--expression network of acyltransferases extracted for P. Kurroa roots from 
plants grown at natural field conditions (PKSR). 
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Table 4.12: Distribution of nodes, edges and hubs of global and acyltransferase -specific co-expression networks. 

 

Tissue Sample Description 

Nodes & 
Edges in 
global 
network 

 
Acyltransferases 
captured 

Nodes & Edges in 
Acyltransferase 
Network 

Major 
Acyltransferases in 
network  

 

Shoots at 15o C 
(PKS15) 

Nodes: 2779 
Edges: 16165 
 

15 
Nodes: 60 
Edges: 47 
 

lipoamide 
acyltransferase 
component of 
branched-chain 
alpha-keto acid 
dehydrogenase 
complex 
acyltransferase-
like At1g54570 
diacylglycerol O-
acyltransferase 
lysophospholipid 
acyltransferase 
LPEAT1 
(LOC105166172) 
acyltransferase-
like At3g26840 
S-acyltransferase 7 
(LOC111408808) 
O-acyltransferase 
WSD1-like 
ubiquitin-
conjugating 
enzyme 

 

Shoots at 25o C 
(PKS25) 

Nodes: 2657 
Edges:  
16156 
 

30 
Nodes: 142 
Edges:  134 

O-acyltransferase 
acyltransferase-
like At3g26840 
acyltransferase-
like At1g54570 
phospholipid 
1-acyl-sn-glycerol-
3-phosphate 
acyltransferase 4 
(LOC105159207) 
acyltransferase-
like 
S-acyltransferase 
22 
(LOC105160003) 
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O-acyltransferase 
WSD1 
(LOC105172709) 
S-acyltransferase 
O-acyltransferase 
(WSD1-like) 
membrane-bound 
O-acyltransferase 
C24H6.01c-like 

 

Field grown 
Shoots  
(PKSS) 

Nodes:2929 
Edges:14527 
 

28 
Nodes:125 
Edges:121 
 

acyltransferase 
S-acyltransferase 
BAHD 
acyltransferase 
O-acyltransferase 
S-acyltransferase 
At2g14255-like 
acyltransferase-
like At1g54570 
1-acyl-sn-glycerol-
3-phosphate 
acyltransferase 
long-chain-alcohol 
O-fatty-
acyltransferase 
O-acyltransferase 
WSD1-like 

 

 

Field grown 
Stolons 
(PKSTS) 

Nodes:2712 
Edges:15360 
 

23 
Nodes:115 
Edges:104 
 

acyltransferase-
like At1g54570 
BAHD 
acyltransferase 
lysophospholipid 
acyltransferase 
LPEAT1-like 
(LOC105963377) 
S-acyltransferase 
23 
(LOC105169327) 
S-acyltransferase 7 
(LOC111408808) 
O-acyltransferase 
WSD1-like 
glycerol-3-
phosphate 
acyltransferase 3 
(LOC105954659) 
S-acyltransferase 8 
(LOC105179299) 
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4.2.2. Comparison of acyltransferase networks of experimentally cultured shoot samples 

(PKS-15 and PKS25 versus field-grown shoots (PKSS)  

Comparative analysis of the shoot samples was done among individual samples since all the 

shoot samples showed different phenotypic characteristics as well as variable content of 

compounds in P. kurroa (Sharma et al., 2021). Network comparison between PKS15 and 

PKS25 resulted in the generation of a network having common nodes, and surprisingly, the 

common interactions were not observed. A total of 13 common nodes with potential TPM 

expression in both samples were observed, namely “1-acyl-sn-glycerol-3-phosphate 

acyltransferase 4”, “acyltransferase-like At1g54570” (Phytyl ester synthase-2), 

“acyltransferase-like At3g26840” (PES1), “callose synthase”, “diacylglycerol O-

acyltransferase”, “DNA-directed RNA Polymerase”, “expressed protein”, “F-box LRR-repeat 

protein”, “lipoamide acyltransferase component of branched-chain alpha-keto acid 

dehydrogenase complex”, “membrane-bound O-acyltransferase C24H6.01c-like”, “O-

Pentatricopeptide 
repeat-containing 
protein 
membrane-bound 
O-acyltransferase 
C24H6.01c-like 
Phospholipid 
diacylglycerol 
acyltransferase 

 

Field grown 
Roots (PKSR) 
 

Nodes:2972 
Edges:15923 
 

40 
Nodes:173 
Edges:167 
 

S-acyltransferase 
acyltransferase 
O-acyltransferase 
BAHD 
acyltransferase 
Acyltransferase 
membrane-bound 
O-acyltransferase 
C24H6.01c-like 
long-chain-alcohol 
O-fatty-
acyltransferase 
Argonaute 
Phospholipid 
diacylglycerol 
acyltransferase 
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acyltransferase” (WSD1- like), “Pentatricopeptide repeat-containing protein”, and “U-box 

domain-containing protein” (Figure 4.25) (Table 4.13).  

 

 

 

  

Figure 4.25: Comparative co-expression networks with linked nodes and edges of common acyltransferases 
between PKS15 and PKS25 transcriptomes. 
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Table 4.13: Distribution of common nodes of acyltransferase subnetwork TPM values in PKS15 vs PKS25.  
Transcript PKS15 PKS25 
acyltransferase 8.166106 6.426799 
Acyltransferase-like protein 5.259263 5.982342 
acyltransferase-like protein At1g54570 13.93166 9.994469 
callose synthase 3.238465 4.426359 
diacylglycerol O-acyltransferase 3.416613 8.780628 
DNA-directed RNA Polymerase 2.1557 6.256761 
expressed protein 2.99 5.762326 
F-box LRR-repeat protein 3.847903 4.756498 
Lipoamide acyltransferase component of branched-chain alpha-keto acid 
dehydrogenase complex 3.354092 7.445896 
membrane-bound O-acyltransferase C24H6.01c-like 6.927565 6.305654 
O-acyltransferase (WSD1-like) 5.595803 16.32642 
O-acyltransferase WSD1-like 16.10202 5.043076 
Pentatricopeptide repeat-containing protein 1.896695 4.944018 
Phospholipid diacylglycerol acyltransferase 6.800648 10.74189 
S-acyltransferase 10.33211 7.947102 
Transcription factor 8.233841 3.053742 
U-box domain-containing protein 9.694073 4.197774 

 

Most of the class had putative acyltransferase functions, whereas other functions such as 

synthase, polymerase, were also observed. Although, both the samples were grown in tissue 

culture stress conditions, the comparative networks presented common nodes with unique 

interactions in both the samples, for example, the common hub (related to acyltransferase) 

interacted with “transketolase”, and “structural maintenance of chromosome protein” in 

PKS15, whereas, with serine/threonine protein kinase in PKS25 that may be obvious because 

PKS25 shoots are grown at a higher temperature than to its counterpart PKS15. Furthermore, 

networks of both experimental and field grown shoot samples were compared to pinpoint 

potential elements playing role in biosynthetic machinery. Common expressing transcripts in 

PKS15 and PKSS, namely “acyltransferase-like At1g54570 (PES2)”, “callose synthase, DNA-

directed RNA Polymerase”, “E3 ubiquitin-protein ligase”, “expressed protein”, “O-

acyltransferase WSD1-like”, and “U-box domain-containing protein” were detected, wherein 

common transcripts network comprised 41 nodes and 35 edges specific to transcriptome 

samples. It was observed that the lack of overlapping edges in both the samples might be due 

to the differential expression of transcripts. Furthermore, the expression of nodes was 

comparatively higher in PKS15 than PKSS (Figure 4.26) (Table 4.14).  
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Table 4.14: Distribution of common nodes of acyltransferase 
subnetwork TPM values in PKS15 vs PKSS.  
Row Labels PKS15 PKSS 
acyltransferase 8.166106 5.665133 
acyltransferase-like protein At1g54570 13.93166 3.861277 
DNA-directed RNA Polymerase 2.1557 4.250608 
E3 ubiquitin-protein ligase 1.996924 1.733923 
expressed protein 2.99 8.110639 
O-acyltransferase WSD1-like 16.10202 11.21269 
Phospholipid diacylglycerol acyltransferase 6.800648 3.172053 
S-acyltransferase 10.33211 4.528512 
structural maintenance of chromosomes 
protein 21.86458 2.04762 
Transcription factor 8.233841 7.673844 

 

Moreover, the degree of freedom of PKS15 specific edges was much higher than PKSS, proving 

the relationship of higher expression of acyltransferase to the co-expression edges. However, 

in the case of the unique nodes of both the samples, the opposite was observed in which number 

of nodes and edges in PKSS were higher than PKS-15. Additionally, an independent cluster of 

acyltransferases was observed of major hubs, namely “O-acyltransferase”, “BAHD 

acyltransferase”, “S-acyltransferase”, and “1-acyl-sn-glycerol-3-phosphate acyltransferase” in 

PKSS. These acyltransferases were mainly present in the end-product biosynthesis of terpene-

glycoside moieties. On the other hand, PKS15 was observed to have only 24 nodes and 20 edges 
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that showed a smaller number of hubs, pinpointing towards less no. of co-expressions (Figure 

4.26) (Table 4.12).  

Network comparison of PKS25 and PKSS presented 10 common nodes in both the samples; 

which were “mitogen-activated protein kinase”, “Phospholipid diacylglycerol acyltransferase”, 

“acyltransferase-like protein At1g54570” (PES2), “BEL1-like homeodomain protein”, “S-

acyltransferase”, “DNA-directed RNA Polymerase”, “serine threonine-protein kinase”, 

“expressed protein”, “O-acyltransferase WSD1-like”, “acyltransferase-like”, “O-

acyltransferase”, “Glucuronosyltransferase”, “methyltransferase”, “Retrotransposon protein”, 

“fructose-bisphosphate aldolase”, and “Cycloartenol synthase”. S-acyltransferase was major 

hub for PKS25, whereas O-acyltransferase was for PKSS network. Other smaller nodes such 

as “Fructose bisphosphate aldolase”, “cycloartenol synthase”, “MAP kinase”, and 

“methyltransferase” were common with unique interactions (Figure 4.27) (Table 4.15). 

Figure 4.26: Comparative co-expression networks with linked nodes and edges of common 
acyltransferases between PKS15 and PKSS transcriptomes. 
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Figure 4.27: Comparative co-expression networks of common acyltransferases with linked nodes and 
edges between PKS25 and PKSS transcriptomes. 
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Table 4.15: Distribution of common nodes of acyltransferase 
subnetwork TPM values in PKS25 vs PKSS. 
Transcripts PKS25 PKSS 
mitogen-activated protein kinase 12.31908 5.292614 
Phospholipid diacylglycerol acyltransferase 10.74189 3.172053 
acyltransferase-like protein At1g54570 9.994469 3.861277 
BEL1-like homeodomain protein 9.951031 3.003643 
S-acyltransferase 7.947102 4.528512 
acyltransferase 6.426799 5.665133 
DNA-directed RNA Polymerase 6.256761 4.250608 
serine threonine-protein kinase 6.000065 3.687288 
expressed protein 5.762326 8.110639 
O-acyltransferase WSD1-like 5.043076 11.21269 
acyltransferase-like 4.825192 8.659518 
O-acyltransferase 4.811779 3.913051 
Galacturonosyltransferase 3.155811 1.002988 
Transcription factor 3.053742 7.673844 
methyltransferase 2.440912 7.52863 
Retrotransposon protein 2.39492 5.554626 
fructose-bisphosphate aldolase 2.01389 21.85238 
Cycloartenol synthase 1.493032 5.94054 

 

 

Additionally, it was observed that PKS25 consists of a larger network (98 nodes and 87 edges) 

whereas PKSS showed smaller network (27 nodes and 23 edges) (Figure 4.21 and Figure 4.22) 

(Table 4.15). Common nodes mutually expressing in both PKS25 and PKSS showed similar 

differences noticed earlier in PKS15 v/s PKS25. In PKS-25, co-expression of callose synthase 

and MBOAT indicated the function of callose formation in the plasma membrane layer. On the 

other hand, this interacted with E3 ubiquitin-protein ligase that activates ubiquitin-conjugating 

enzyme indicating the presence of certain protein degradation occurring in PKSS. Other 

essential enzymes such as long-chain acyl CoA synthetase were observed only in PKSS. 

Common nodes expressing in PKSS, PKS15, and PKS25 showed differential interaction in their 

corresponding conditions, where “acyltransferase-like At1g54570 (PES2)”, “callose synthase”, 

“DNA-directed RNA Polymerase”, “expressed protein”, and “U-box domain-containing 

protein” were found expressed in all 3 transcriptomes (Figure 4.28) (Table 4.16).  
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Table 4.16: Distribution of common nodes of acyltransferase 
subnetwork TPM values in PKS15 vs PKS25 vs PKSS. 

Transcripts PKS15 PKS25 PKSS 

acyltransferase 8.166106 6.426799 5.665133 
Acyltransferase-like 
protein 5.259263 5.982342 na 
acyltransferase-like 
protein At1g54570 13.93166 9.994469 3.861277 

callose synthase 3.238465 4.426359 na 
diacylglycerol O-
acyltransferase 3.416613 8.780628 na 
DNA-directed RNA 
Polymerase 2.1557 6.256761 4.250608 

expressed protein 2.99 5.762326 8.110639 
F-box LRR-repeat 
protein 3.847903 4.756498 na 
Lipoamide 
acyltransferase 
component of 
branched-chain 
alpha-keto acid 
dehydrogenase 
complex 3.354092 7.445896 na 
membrane-bound O-
acyltransferase 
C24H6.01c-like 6.927565 6.305654 na 
O-acyltransferase 
(WSD1-like) 5.595803 16.32642 na 
O-acyltransferase 
WSD1-like 16.10202 5.043076 11.21269 
Pentatricopeptide 
repeat-containing 
protein 1.896695 4.944018 na 
Phospholipid 
diacylglycerol 
acyltransferase 6.800648 10.74189 3.172053 

S-acyltransferase 10.33211 7.947102 4.528512 

Transcription factor 8.233841 3.053742 7.673844 
U-box domain-
containing protein 9.694073 4.197774 na 

 

Overall, comparative analysis of shoot-derived networks was done based on individual pairs 

since all shoot samples showed different phenotypic characteristics where “callose synthase” 

and “U-box containing protein” were expressing highest in PKSS. In contrast, “acyltransferase-
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like At1g54570” (PES2) expressed higher in PKS15 and PKS25, which mainly maintains 

integrity caused by a stress-related condition in chloroplast membrane by abiotic factors since 

PKSS shoots are grown in the natural field conditions with lower expression. In PKS25, the 

expression of a common node was found moderate except “DNA-directed RNA polymerase”, 

highlighting the overall transcription activity possibly higher in this sample (Figure 4.28) (Table 

4.13).  

  

Figure 4.28: Comparative co-expression networks of common acyltransferases with linked nodes and edges among 
PKS15, PKS25 and PKSS transcriptomes. 
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4.2.3. Comparison of acyltransferase networks among different tissues of field grown 

plant samples (PKSS, PKSTS and PKSR) 

 Network comparison of PKSS and PKSTS showed differential expression and interactions of 

common nodes. The common nodes expressing in shoots and stolons were “acyltransferase-

like protein At1g54570” (PES2), “autophagy protein”, “BAHD acyltransferase”, “expressed 

protein”, “heat shock 70 kDa protein”, “Hydrolyzes glycerol-phospholipids at the terminal 

phosphodiesteric bond” (By similarity), “O-acyltransferase WSD1-like”, “Phospholipid 

diacylglycerol acyltransferase”, “Retrotransposon protein”, and “S-acyltransferase” (Figure 

4.29) (Table 4.17).  

 

  

Figure 4.29: Comparative co-expression networks of common acyltransferases and linked nodes and edges 
between PKSS and PKSTS transcriptomes. 
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Table 4.17: Distribution of common nodes of acyltransferase subnetwork TPM values in PKSS vs 
PKSTS  

Transcripts PKSS PKSTS 

acyltransferase 5.665133 5.336695 

acyltransferase-like 8.659518 38.6021 
acyltransferase-like protein At1g54570 3.861277 3.301555 

autophagy protein 4.346463 5.049633 
BAHD acyltransferase 7.57448 14.86969 

expressed protein 8.110639 20.65944 
Heat shock 70 kDa protein 8.071508 9.199704 
Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond (By 
similarity) 2.396875 0.856055 

O-acyltransferase WSD1-like 11.21269 9.697264 

Phospholipid diacylglycerol acyltransferase 3.172053 4.60297 

Retrotransposon protein 5.554626 2.007269 
S-acyltransferase 4.528512 9.957728 

S-acyltransferase At2g14255-like 7.922346 2.449905 
transcription factor 7.673844 6.292024 

 

It was observed that S-acyltransferase comparatively expressed less in PKSS but still formed 

more no. of co-expressing interactions. In addition, heat shock protein and transposon protein 

were also having different interactions and expression in samples resulting in exclusive 

interaction for both PKSS and PKSTS. On the other hand, 9 nodes and 6 edges were observed 

only in PKSTS and the presence of “MBOAT” as a major hub. In the case of PKSS, connecting 

links were observed between “O-acyltransferase” and “long-chain-alcohol-O-fatty 

acyltransferase” via “fructose bisphosphate aldolase” moiety (Figure 4.29) (Table 4.14). 

Analysis of PKSTS and PKSR acyltransferase networks resulted in identification of common 

nodes mutually expressing differently in both the samples; which were “26S proteasome non-

ATPase regulatory subunit”, “AAA-type ATPase family protein”, “Acyltransferase”, 

“Acyltransferase-like protein”, “acyltransferase-like protein At1g54570” (PES2), “aspartic 

proteinase”, “BAHD acyltransferase”, “cytochrome P450”, “DEAD-box ATP-dependent RNA 

helicase”, “expressed protein”, “Hydrolyzes glycerol-phospholipids at the terminal 

phosphodiesteric bond” (By similarity), “Lectin-domain containing receptor kinase”, “LRR 

receptor-like serine threonine-protein kinase”, “membrane-bound O-acyltransferase 

C24H6.01c-like”, “O-acyltransferase WSD1-like”, “Pentatricopeptide repeat-containing 

protein”, “phosphatase 2C”, “Phospholipid diacylglycerol acyltransferase”, “receptor-like 

protein kinase”, “ribonuclease P family protein”, and “S-acyltransferase”, factor” (Figure 4.30) 

(Table 4.15).  
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Major hubs for both the samples were “S-acyltransferase”, “BAHD acyltransferase” forming 

different co-expression interactions. Further, some connecting nodes such as “pentatricopeptide 

repeat-containing protein”, “aspartic proteinase”, “receptor-like protein kinase”, “AAA-type 

ATPase family protein”, “DEAD-box ATP dependent RNA helicase”, “lectin domain receptor 

kinase” were present in both the samples with differences in expression. Furthermore, despite 

of higher expression of CYP 450, interactions with other nodes were absent in PKSTS, but in 

PKSR, the same node was found to connect all the 3 major hubs via similar co-expression 

profile. The “acyltransferase-like protein At1g54570” (PES2) was exclusive hub for PKSTS 

and majorly formed interactions and higher expression (Figure 4.30) (Table 4.18).  

  

Figure 4.30: Comparative co-expression networks of common acyltransferases with linked nodes and 
edges between PKSTS and PKSR transcriptomes 



82 
 

 

Table 4.18: Distribution of common nodes of acyltransferase subnetwork TPM values in PKSS vs PKSTS. 
Transcripts PKSR PKSTS 
26S proteasome non-atpase regulatory subunit 3.715405 8.130582 
AAA-type ATPase family protein 2.561353 2.931542 
Acyltransferase 3.980942 5.336695 
Acyltransferase-like protein 2.687091 5.92144 
acyltransferase-like protein At1g54570 3.065248 3.301555 
aspartic proteinase 5.902519 2.109266 
BAHD acyltransferase 7.665313 14.86969 
cytochrome P450 3.487211 23.67505 
DEAD-box ATP-dependent RNA helicase 7.735477 6.651131 
expressed protein 13.28977 20.65944 
Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond (By 
similarity) 3.581558 0.856055 
Lectin-domain containing receptor kinase 5.173803 3.729279 
LRR receptor-like serine threonine-protein kinase 1.271733 4.292554 
membrane-bound O-acyltransferase C24H6.01c-like 2.296254 3.241296 
O-acyltransferase WSD1-like 8.950824 9.697264 
Pentatricopeptide repeat-containing protein 2.746941 1.95773 
phosphatase 2C 4.818019 10.32369 
Phospholipid diacylglycerol acyltransferase 5.042476 4.60297 
receptor-like protein kinase 1.723092 4.735057 
ribonuclease P family protein 3.71623 4.650993 
S-acyltransferase 3.611732 9.957728 
transcription factor 8.293427 6.292024 

 

 

Shoot, root, and stolon acyltransferase networks were compared, resulting in the identification 

of components in all of them with a difference of expression profile. These were namely 

“Acyltransferase-like protein At1g54570” (PES2), “BAHD acyltransferase”, “expressed 

protein”, “Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond (By 

similarity)”, “O-acyltransferase WSD1-like”, “Phospholipid diacylglycerol acyltransferase”, 

and “S-acyltransferase” (Figure 4.31) (Table 4.19). 
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Table 4.19: Distribution of common nodes of acyltransferase subnetwork TPM values in PKSS vs PKSTS vs 
PKSR . 
Transcripts PKSR PKSS PKSTS 
Acyltransferase 3.980942 5.665133 5.336695 
acyltransferase-like protein At1g54570 3.065248 3.861277 3.301555 
BAHD acyltransferase 7.665313 7.57448 14.86969 
expressed protein 13.28977 8.110639 20.65944 
Hydrolyzes glycerol-phospholipids at the terminal phosphodiesteric bond 
(By similarity) 3.581558 2.396875 0.856055 
O-acyltransferase WSD1-like 8.950824 11.21269 9.697264 
Phospholipid diacylglycerol acyltransferase 5.042476 3.172053 4.60297 
S-acyltransferase 3.611732 4.528512 9.957728 
transcription factor 8.293427 7.673844 6.292024 

 

 

 

 

Figure 4.31: Comparative co-expression networks of common acyltransferases with linked nodes and edges among 
PKSS, PKSTS and PKSR transcriptomes. 
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4.2.4. BAHD acyltransferase subnetwork capturing co-expressing modules related to 

iridoid glycoside biosynthesis in shoots, stolons and roots 

 The BAHD acyltransferase-specific subnetwork was only found in the field-grown samples. 

Further analysis of connecting nodes highlighted the involvement of unique edges for every 

specific sample. In PKSR, “HSF-type DNA-binding”, “serine carboxypeptidase-like”, 

“glycogen synthase”, “Isoleucyl-tRNA synthetase”, “OPT oligopeptide transporter protein”, 

“cytochrome P450”, “SNARE associated Golgi protein”, “element-binding protein”, “E3 

ubiquitin-protein ligase”, “Phytochrome A-associated F-box” and “ribonuclease P family 

protein” (Figure 4.31) were observed forming edges with BAHD-ATs. In PKSS, “resistance 

protein”, “STYKc”, “ribosomal protein S1”, “serine threonine-protein kinase”, “DUF1771”, 

“Molybdopterin guanine dinucleotide synthesis protein B", “autophagy protein”, “smr domain-

containing protein”, “BEL1-like homeodomain protein”, “WD repeat-containing protein”, 

“ENTH domain” were observed as corresponding edges (Figure 4.31). CBL-interacting serine 

threonine-protein kinase is a stress tolerance protein and involved in shoot biomass 

development (Suzuki et al., 2007). In PKSTS, “BRASSINAZOLE-RESISTANT 1-like”, 

“Transcription factor” (bZIP and bHLH), “aspartic proteinase”, “F-box protein”, 

“Retrotransposon protein”, “polyphenol oxidase”, “cellulose synthase-like protein, and histone 

acetyltransferase”, “5′ -nucleotidase SurE-like”, “DUF4206” were detected (Figure 4.31). Co-

expression linkage with polyphenol oxidase (PPO) is strikingly important for phenylpropanoid 

pathway including biosynthesis of acyl group containing acids such as cinnamic acid and 4-

coumaric acid that are major functional groups in last step modifications of iridoid glycosides. 

The differences in the edge formation in every sample highlighted the involvement of specific 

functional changes with expression among different tissues. BAHD-ATs expression and 

interaction in different samples indicated their presence in last step modification of iridoid 

glycosides. Therefore, sequences of BAHD-ATs were further investigated with multiple 

sequence alignment approach. Four transcripts of BAHD were generated using Multiple 

Sequence Alignment by UPGMA approach (Figure 4.32).  
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Transcripts with larger length were shortlisted from each clad of the tree. This resulted in total 

of 6 transcript sequences used for further modelling and molecular docking against acyl-group 

ligands to check the specificity for iridoid glycoside compounds.  

4.2.5. Modelling and molecular docking of BAHD-acyltransferases to identify specific 

intermediates for last step modification of iridoid glycosides 

Overall, a total of 13 major compounds belonging to iridoid glycoside class are reported in P. 

kurroa. These are Picroside-I, Picroside-II, Picroside-III, Picroside-IV Picroside-V, kutkoside, 

pikuroside, 6-ferulloyl catapol, vernicoside, minecoside, verminoside, specioside and 6-

vanniloyl catalpol. Among them, the presence of common catalpol structure with different acyl 

groups forming esterification bond with one of its oxygen atoms has been noticed. In our study, 

Picroside-II, kutkoside, pikuroside and 6-vanniloyl catalpol have been found to have vanilloyl 

functional group whereas in picroside-III and 6-ferruloyl catalpol, the coniferyl moiety has been 

observed. P-coumaroyl functional group was specific for Picroside-V and specioside. 

Moreover, Picroside-I, Picroside- V, vernicoside and minecoside, presence of cinnamoyl, 

methyoxybenzoyl, benzoyl and 3-hydroxy-4-methoxycinnamoyl functional groups discussed 

in Chapter 3. Such additions are mainly performed by various Acyl-CoAs, which donate their 

acyl groups to catalpol.Six transcript sequences, which have been shortlisted through 

Figure 4.32: Phylogenetic tree analysis for filtering potential BAHD acyltransferase from the transcriptomes for molecular 
modelling. 
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comparative analyses as detailed above were named as SS_3469, STS_4084, STS_4241, 

STS_8424, SR_4494, and SR_4510 (Table 4.17) , where alphabet code represents identity to a 

particular sample (PKSS, PKSTS, and PKSR) and number denotes transcript_id in our dataset. 

In docking results of BAHD-ATs (receptors) and acyl donors (ligands) most of the interactions 

were of H-bonds and hydrophobic interactions. The binding affinity was observed in the good 

and excellent binding affinity ranges. Thus, the compounds with binding affinity less than -7.5 

have been considered as potential counterparts. The results showed that the cinnamoyl, 

vanilloyl, feruloyl and benzoyl moieties containing acyl donors had excellent binding affinities 

for their respective BAHD-ATs specific to different tissue samples of P. kurroa. The 

interactions with their respective BAHD-ATs also pinpointed towards their biosynthetic sites.  
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Table 4.20: Outcomes of docking between BAHD-Acyltransferase Enzymes and their corresponding acyl-group donating 
compounds. 

Protein ID Modelled structure Acyl donor compounds Binding 
affinity 
(kcal/mol) 

SS_3469 
(PKSS) 

 

Cinnamoyl_CoA 
p_coumaroyl_COA 
6-ferulloylcatalpol 
vanilloyl_CoA 
ferruoyl_COA 
6-vanilloylcatalpol 
6-cinnamoyl catalpol 

-9.1 
-9 
-8.8 
-8.6 
-8.4 
-8.4 
-8 

STS_4084 
(PKSTS) 

 
 

 

6-cinnamoyl  catalpol 
p_coumaroyl_COA 
6-vanilloylcatalpol 
benzoyl_COA 
ferruoyl_COA 
Cinnamoyl_CoA 
6-ferulloylcatalpol 

-9.7 
-8.7 
-8.7 
-8.3 
-8.3 
-8.2 
-8 

STS_4241 
(PKSTS) 

 
 
 

p_coumaroyl_COA 
Cinnamoyl_CoA 
6-cinnamoyl  catalpol 
caffeoyl_COA 
6-ferulloylcatalpol 
6-vanilloylcatalpol 
3_hydroxy_4_methoxycinnamoyl_COA 
benzoyl_COA 
vanilloyl_CoA 

-8.8 
-8.7 
-8.6 
-8.5 
-8.5 
-8.3 
-8.2 
-8.2 
-8.2 

STS_8424 
(PKSTS) 

 

6-cinnamoyl  catalpol 
Cinnamoyl_CoA 
6-ferulloylcatalpol 
6-vanilloylcatalpol 
Catalpol 

-8.9 
-8.1 
-7.9 
-7.7 
-7.5 

SR_4494 
(PKSR) 

 

3_hydroxy_4_methoxycinnamoyl_COA 
benzoyl_COA 
6-cinnamoyl  catalpol 
ferruoyl_COA 
6-ferulloylcatalpol 
caffeoyl_COA 
Cinnamoyl_CoA 
vanilloyl_CoA 
p_coumaroyl_COA 

-10.2 
-9.5 
-9.2 
-9.1 
-8.9 
-8.8 
-8.8 
-8.7 
-8.3 
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6-vanilloylcatalpol -8.3 
SR_4510 
(PKSR) 

 

6-cinnamoyl  catalpol 
Cinnamoyl_CoA 
caffeoyl_COA 
6-ferulloylcatalpol 
6-vanilloylcatalpol 
p_coumaroyl_COA 
Catalpol 
vanilloyl_CoA 

-8.9 
-8.9 
-8.8 
-8.8 
-8.8 
-8.6 
-8.2 
-8 
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4.3. Identification and mapping of single nucleotide polymorphisms (SNPs) 
to the global co-expression networks 

 

4.3.1. Reads generation and De novo sequence assembly of GBS data 

For each population, the results of GBS sequencing were raw reads, which were then further 

cleaned by the radtags procedure. 161834 fragments of assembled sequences were catalogued 

by the cstacks after the cleaned readings were processed through the stacks pipeline. Based on 

HPLC quantifications of P-I and P-II in shoots, stolons, and roots, the P. kurroa populations 

were split into high and low populations. From the outcomes P-I percent in shoots, P-I percent 

+P-II percent in stolons, and P-II percent in roots, the GBS dataset was divided into 3 types of 

populations.Populations with concentrations greater than 1.6 % was considered as high whereas 

those with less than 0.6 % were taken as low content population set for P-I % in shoots. Overall, 

14 populations were considered as high P-I population and 11 were considered as low P-I 

populations. Population-wise SNP analysis resulted in the identification of 26,7186 SNPs in 

overall fragments. Fragments unique for only high and low populations were filtered from the 

total catalogue resulting in 3,483 fragments for high P-I% in shoots (HPF-S) and 4,677 for low 

P-I% population (LPF-S). Similarly, based on total P-I + PII% in stolons, GBS datasets were 

divided into high and low populations. 13 populations with greater than 1.75 PI+PII % content 

was considered as high and 16 populations with less than 1.0 PI+PII % were considered as low 

content. Fragments unique to only high and low populations were filtered from the total 

catalogue resulting in 6,102 fragments for high PI+PII % in stolons (HPF-ST) and 1,878 for 

low PI+PII % population (LPF-ST). Likewise, the dataset was divided into low and high 

populations for PII% content in roots. 16 populations with greater than 0.16 PII% were 

considered as high and 24 population with less than 0.15 PII% were considered as low. 

Fragments unique to only high and low populations were filtered from the total catalogue 

resulting in 3,141 fragments for high PII % in root (HPF-R) and 2298 for low PII % population 

(LPF-R). These sets of fragments based on differential picroside contents in different tissues 

were considered for mapping against transcriptomes followed by co-expression network 

analysis. 
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4.3.2. Assembly of transcriptomes data 

Illumina paired-end sequencing resulted in generation of 29903780, 26053444, 37034218, 

41298148, 20413038, 20064888, 27790024, and 31291454 raw reads from RNA-seq analysis 

of of PKS1, PKST3, PKS4, PKS5, PKST5, PKST16, PKST18, and PKS21 respectively (Table 

S1). Number of trimmed and cleaned raw reads that qualified for further processing were 

28912390, 25021970, 35896124, 39998026, 19532924, 19182054, 26739904, and 30119848, 

for PKS1, PKST3, PKS4, PKS5, PKST5, PKST16, PKST18, and PKS21, respectively. The 

number of final assembled transcripts for PKS1, PKST3, PKS4, PKS5, PKST5, PKST16, 

PKST18, and PKS21 were 140777, 152527, 200074, 148973, 199520, 121842, and 241041, 

respectively. (Table 4.21) 

Table 4.21: Distribution of annotation, networks, and mapped SNP fragments on 8 transcriptome samples 

  
PKS1 PKST3 PKS4 PKS5 PKST5 PKST16 PKST18 PKS21 

Raw Reads 29903780 26053444 37034218 41298148 20413038 20064888 27790024 31291454 

Cleaned Raw Read 28912390 25021970 35896124 39998026 19532924 19182054 26739904 30119848 

Assembled 140777 152527 200074 148973 209785 199520 121842 241041 

Annotated transcripts 36317 47066 48985 45502 44763 49024 43531 52698 

Gene Ontology annotated 17118 21402 21897 23299 18157 22051 23176 22384 

KO annotated 14769 18080 18483 19407 15582 18376 19166 18758 

Uniprot 5625 6762 7135 7546 5851 6916 7252 7238 

Global Network Nodes 6290 7411 6677 3823 6874 6989 6239 7004 

Global Network Edges 65944 69570 22404 58312 63023 61946 60990 64046 

Mapped Fragments 802 900 1022 1213 729 889 1106 1026 

High Population 361 389 444 513 357 368 476 428 

Low Population 388 456 492 613 309 456 548 522 

SNP network nodes 1389 2280 918 1870 1766 1880 1991 2170 

SNP network edges 2075 4299 926 3475 3002 3244 3832 4092 
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4.3.3. Functional annotation of Picrorhiza kurroa transcriptomes 

Transcriptome assemblies were annotated with PLAST and were computed for orthology 

predictions at different taxonomic levels using eggNOG [129] resource database. Groups of 

orthologs were thereafter functionally annotated from recently updated GO [130] and Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) pathway databases [131]. This resulted in the 

actual annotation of 36317, 47066, 48985, 45502, 44763, 49024, 43531 and 52698 transcripts 

of PKS1, PKST3, PKS4, PKS5, PKST5, PKST16, PKST18, and PKS21, respectively. 5625, 

6762, 7135, 7546, 5851, 6916, 7252, and 7238, unigenes from PKS1, PKST3, PKS4, PKS5, 

PKST5, PKST16, PKST18, and PKS21, respectively were extracted from hits in UniProt 

database. Annotation by GO resulted in 17118, 21402, 21897, 23299, 18157, 22051, 23176, 

and 22384, transcripts of assembled sequences from PKS1, PKST3, PKS4, PKS5, PKST5, 

PKST16, PKST18, and PKS21, respectively. In addition, annotation using the KEGG database 

identified 14769, 18080, 18483, 19407, 15582, 18376, 19166, and 18758, transcripts, 

respectively, from PKS1, PKST3, PKS4, PKS5, PKST5, PKST16, PKST18, and PKS21, (Table 

4.18). 

4.3.4. Generation of gene co-expression networks 

Annotated transcripts with transcripts per million reads (TPM) values greater than zero were 

although a smaller fraction of the total transcriptome dataset but still covered large entities in 

the form of a global network representing the overall system. The number of nodes in the 8 

network modules were 6290, 4259, 6677, 3823, 6874, 6989, 6239, and 7004 from PKS1, 

PKST3, PKS4, PKS5, PKST5, PKST16, PKST18, and PKS21, respectively. Furthermore, the 

number of edges from these networks were 65944, 71007, 22404, 58312, 63420, 62353, 61376, 

and 64521 for PKS1, PKST3, PKS4, PKS5, PKST5, PKST16, PKST18, and PKS21, 

respectively 

4.3.5. Mapping GBS fragments of different populations on transcriptome dataset 

Fragments containing SNPs were mapped to transcriptome datasets covering modules of 

transcripts among transcriptomes. Overall, 802, 900, 1022, 1213, 729, 889, 1106, and 1026 

fragments for P-I % were mapped against PKS1, PKST3, PKS4, PKS5, PKST5, PKST16, 

PKST18, and PKS21 transcriptomes, respectively. Out of these 361, 389, 444, 513, 357, 368, 

476, and 428 were HPF-S and 388, 456, 492, 613, 309, 456, 548, and 522 were LPF-S whereas 

the rest were mapped to both HPF-S and LPF-S.   
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Similarly, 1012, 1208, 1295, 1471, 881, 889, 1174, 1423 and 1287 transcripts were mapped to 

the unique fragment library based on P-I +PII % content in stolons for PKS1, PKST3, PKS4, 

PKS5, PKST5, PKST16, PKST18, and PKS21 transcriptomes, respectively. Out of these 826, 

1011, 1085, 1221, 988, 1204, and 1059 were HPF-ST and 79, 104, 104, 131, 84, 98, 117, and 

120 were LPF-ST. Likewise, for PII% in root specific population 479, 505, 635, 1470, 437, 

525, 629, and 1101 transcripts of PKS1, PKST3, PKS4, PKS5, PKST5, PKST16, PKST18, and 

PKS21 transcriptome samples were mapped respectively. Out of these 274, 260, 356, 1222, 

155, 280, 343, and 518 were HPF-R and 169, 183, 240, 132, 246, 209, 243 and 369 were LPF-

R whereas, rest of the transcripts mapped to both. These mapped fragments were taken as bait 

to extract interacting edges from the global co-expression network (Figure 4.33). 

 

 

Figure 4.33: Distribution of SNPs based on the population and the type of category. (A): Distribution of 
SNPs among Low Population fragments. (B): Distribution of SNPs among High Population Fragments. (C): 
Distribution of HPF(Red) and LPF(Green) containing transcripts in global individual gene co-expression 
networks. (D): Subnetworks of transcripts containing HPF or LPF and their interacting. 
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4.3.6. Gene co-expression network analysis of picroside % population in different tissues. 

The gene co-expression network was extracted from global co-expression network using 

transcripts matching with SNP encompassing fragments of high/ low populations. These 

subnetworks represented as nodes having SNPs specific for high or low Picroside-I in shoots 

were relatively smaller in number of nodes in the range of 918-2280 nodes and 926-4299 edges. 

Similarly, subnetwork consisting of nodes based on SNPs specific for Picroside content in 

stolons were in the range of 1272-2747 nodes and 1498-5752 edges. Likewise, Sub-networks 

specific for SNPs based on P-II % content in roots were in the range of 518-2372 nodes and 

518-4737 edges. Among extracted networks, the nodes were divided based on the type of 

population and the type of SNPs namely transitions and transversions. 

4.3.7. Gene Ontology analysis of interacting nodes in the networks 

The functions mostly related to secondary metabolites biosynthesises were used to functionally 

annotate the interactive edges of SNPs containing nodes of each transcriptome sample. These 

functional modules were extracted using keywords such as vacuoles, transporter activity, 

transferase, isoprenoid, secondary metabolite biosynthesis, defence response, transcription 

factor, root, starch, protein kinase, carbon fixation, chloroplast, photosynthesis, shoot 

development, and signal transduction as most of these GO terms are directly or indirectly 

related to secondary metabolites biosynthesis and storage in plants. Overall average of 1655 

transcripts were covered for transcriptome sample. Out of these, 839 transcripts were covered 

in PKS1 that was least out of all whereas, 2212 transcripts were covered in PKST3 that was the 

highest among all the transcriptome samples. Among the function, the transcripts with function 

related to carbon fixation were covered least by the interactive network whereas chloroplast 

was found to be covered by the highest number of transcripts. (Figure 4.34) 
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Figure 4.34: Distribution of Gene Ontology modules interacting with SNPs containing 
transcripts. (A): Gene Co-expression network of transcripts with specific GO functions 
interacting with SNP containing nodes. (B): Distribution of transcripts mapping to specific 
GO functions.  
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4.3.8. Identification of hubs with SNPs based on P-I % in shoots 

Hubs from each co-expression network were extracted individually based on the categories of 

high/low population SNPs and the occurrence of transversion or transition type of SNPs. Each 

individual sample showed a wide variety of transcripts representing various putative functions 

covering interactive nodes of different GO annotations mentioned above. In context of 

Picroside-I concentration, PKS1 and PKS4 were lying in the range of low concentrations 

therefore significance of hubs comprising LPF is of high importance. Similarly, PKS5, PKST5 

and PKST16 were populations of high Picroside-I concentrations therefore hubs comprising 

HPF are high prevalence. However, PKST3, PKST18 and PKS21 were lying in the moderate 

range of P-I concentration therefore, importance of hubs with both HPF-S and LPF-S should 

also be considered. (Table 4.22) 

Table 4.22: Distribution of hubs specific for HPF-S and LPF-S identified for 8 transcriptome 
samples. 

Populatio
n ID 

PI % in 
shoot 

Population 
Total 
Number 
of Hubs 

Hubs 
comprising 
HPF 

Hubs 
comprising 
LPF 

Hubs 
comprising 
both HPF and 
LPF 

PKS1 0.53% Low 12 6 6 0 

PKST3 1.28% Moderate 17 6 7 4 

PKS4 0.13% Low 15 6 6 3 

PKS5 1.68% High 14 4 7 3 

PKST5 1.68% High 18 8 7 3 

PKST16 1.72% High 15 5 10 0 

PKST18 1.59% High 16 6 8 2 

PKS21 0.71% Moderate 18 9 9 0 

 

4.3.9. Network analysis of unique hubs for P-I% in shoots corresponding to different 
transcriptome samples  

Hubs unique to each set of a transcriptome based on the presence of populations were identified 

thus resulting in the probable SNPs containing transcripts corresponding to P-I concentrations. 

In case of low P-I% population, 8 hubs were identified uniquely having LPF-S which were 

namely “protein transport protein SEC61 subunit”, “actin filament-based movement”, “4-

coumarate--CoA ligase-like”, “domain protein”, “aldehyde oxidase”, “protein phosphatase 2C 
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55-like”, “pyrophosphate-energized vacuolar membrane proton” and “leucine 

aminopeptidase”. On the other hand, 9 hubs namely “NADP-dependent alkenal double bond 

reductase”, “Transmembrane emp24 domain-containing protein”, “arginine N-

methyltransferase”, “Helix-loop-helix DNA-binding domain”, “Ankyrin repeat domain 24”, 

“30S ribosomal protein”, “Cold acclimation protein”, “Uroporphyrinogen decarboxylase” and 

“DJ-1/PfpI family” were found specifically in high picroside population transcriptome. (Table 

4.19) 

4.3.10. Network analysis of common hubs of P-I% population 

Shortlisted SNPs containing nodes were categorized as transition and transversion based on the 

presence of SNPs. Furthermore, another criteria of population was also consistent with the 

network where nodes of high and low population were considered. Nodes with transversion 

type of SNPs were identified from each transcriptome, followed by sorting based on occurrence 

and interaction among different transcriptome samples. Total 50 and 61 hubs were identified 

for HPF and LPF, respectively, Whereas 16 hubs were identified for both high and low 

populations. Among these, 10 hubs were found to be present for at least 3 transcriptomes. Some 

of the important hubs specific for low population SNPs were “AdoMet-dependent rRNA 

methyltransferase”, “Serine theonine protein kinase”, “auxin responsive protein”, “3-deoxy-D-

arabino-heptulosonate 7-phosphate”, “actin filament-based movement”, “UDP-

Glycosyltransferase”, and “leucine aminopeptidase”. On the other hand, hubs such as 

“clavaminate synthase-like protein”, “fructose-bisphosphate aldolase”, “Pyruvate 

decarboxylase”, “2-oxoglutarate malate translocator”, “5-hydroxyisourate hydrolase”, 

“arginine N-methyltransferase” were specific only for high population SNPs. Some of the 

important hubs present for both the high and low population were “Nuclear matrix constituent 

protein”, “4-coumarate-CoA ligase” (Table 4.22) 

4.3.11. Identification of hubs with SNPs based on P-I+P-II % content in stolons 

Based on the mapped fragments for HPF-ST and LPF-ST fragments, hubs were identified. 

Based on the differential P-I+P-II content in stolons, these hubs were further filtered. Among 

the eight transcriptomes, PKST3, PKS4 and PKS21 were thought to have a high picroside 

content population in stolons, so the presence of hubs containing HPF-ST was given more 

attention in the analysis. Similarly, hubs with LPF-ST were taken into consideration as PKS5, 

PKST5, and PKST16 were in the lower range of PI+PII content. Like PKS1, PKST18 has hubs 

with LPF-ST and HPF-ST concentrated in their somewhat sized populations. (Table 4.20) 
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4.3.12. Network analysis of Unique hubs for P-I+P-II % in stolons corresponding to 
different transcriptome samples  

As a result of the identification of hubs specific to each set of a transcriptome based on the 

existence of populations, stolons with P-I+PII contents in their transcripts were likely SNP-

containing. The E3 ubiquitin-protein ligase, CBL-interacting serine threonine protein kinase, 

Zinc finger protein CONSTANS-LIKE, glutathione, homeobox-leucine zipper protein, and 

phosphoserine aminotransferase were identified as 7 hubs specifically having LPF-ST in the 

case of low P-I+PII content population. However, six hubs were found to be specifically high 

in the picroside population transcriptome, including "E3 ubiquitin-protein ligase," 

"glutathione," "kinesin-like calmodulin-binding protein," "serine threonine-protein 

phosphatase 2A 65 kDa regulatory subunit A," "cell division cycle protein 48," and "peptide 

nitrate transporter At1g22540-like". (Table 4.23) 

Table 4.23: Distribution of hubs specific for HPF-ST and LPF-ST identified for 8 
transcriptome samples. 

Populatio
n ID 

PI + 
PII % 
in 
stolon 

Population 
Total 
Number 
of Hubs 

Hubs 
comprising 
HPF 

Hubs 
comprising 
LPF 

Hubs 
comprising 
both HPF and 
LPF 

PKS1 1.15% Moderate 13 5 5 3 

PKST3 2.35% High 19 7 7 5 

PKS4 2.11% High 14 7 4 3 

PKS5 0.84% Low 19 7 6 6 

PKST5 0.84% Low 20 7 8 5 

PKST16 0.65% Low 20 8 7 5 

PKST18 1.26% Moderate 16 6 5 5 

PKS21 1.82% High 15 6 5 4 

 

4.3.13. Network analysis of common hubs based on P-I+P-II % in stolons 

Shortlisted SNP-containing nodes were classified as transition or transversion based on the 

presence of SNPs. Another population criterion that took into account the nodes with high and 

low populations was compatible with the network. Each transcriptome's nodes containing 

transversion-type SNPs were discovered, and then the nodes were sorted based on how 

frequently they appeared and how they interacted with other samples. For HPF-R and LPF-R, 
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a total of 50 and 47 hubs, respectively, were found. In contrast, 23 hubs with both high and low 

populations were found. 19 hubs were discovered to be present for at least 3 transcriptomes. 

Some of the important hubs specific for low population SNPs were “ubiquitin carboxyl-

terminal hydrolase”, ”Pfam:IstB”, “one of the two reaction center proteins of photosystem II”, 

“S-acyltransferase”, “Histone H1”, “WRKY transcription factor”, “ABC transporter B family 

member” ,”siroheme” and “tubby-like F-box protein”. On the other hand, hubs such as “UDP-

Glycosyltransferase”, “E3 ubiquitin-protein ligase”, “CBL-interacting serine threonine-protein 

kinase”, “Zinc finger protein CONSTANS-LIKE”, “glutathione”, “homeobox-leucine zipper 

protein”, “phosphoserine aminotransferase”, and “Protein of unknown function (DUF1644)” 

were specific only for high population SNPs. (Table 4.20) 

4.3.14. Identification of hubs with SNPs based on P-II % in roots 

The mapped fragments associated to HPF-R and LPF-R fragments were used to identify hubs. 

Based on the occurrence of distinct PII content in roots in the transcriptomes, these hubs were 

further filtered. PKS5, PKST5, and PKS18 were three of the eight transcriptomes that were 

thought to have a high picroside content population for roots, hence the investigation was more 

heavily focused on hubs that included HPF-R. Similarly, hubs with LPF-R were considered 

since PKS1, PKST4, and PKST16 were in the lower range of PII content. Similarly, PKST3, 

PKS21 also had a moderate population, and its hubs with LPF-R and HPF-R were concentrated 

there. (Table 4.21) 

4.3.15. Network analysis of unique hubs for P-II % in roots corresponding to different 
transcriptome samples  

Hubs unique to each set of a transcriptome based on the presence of populations were identified 

and resulted in probable SNPs encompassing transcripts corresponding to PII% content in roots. 

In case of low PII % populations, 8 hubs were identified uniquely having LPF-R and these were 

namely “Ethylene-overproduction protein”, “HEAT repeat”, “PfkB-type carbohydrate kinase 

family protein”, “receptor-like protein kinase”, “Rhamnose biosynthetic enzyme”, “sucrose 

transporter”, “TBCC domain-containing protein 1-like”, and “transmembrane 9 superfamily 

member”. On the other hand, 17 hubs namely “5-hydroxyisourate hydrolase”, “5-

methyltetrahydropteroyltriglutamate—homocysteine”, “BTB POZ domain-containing 

protein”, “calcium-dependent protein kinase”, “Cysteine-rich receptor-like protein kinase”, 

“DJ-1/PfpI family”, “Domain of Unknown Function (DUF1086)”, “galactinol synthase”, 

“Methionyl-tRNA”, “phosphoribosylformylglycinamidine synthase”, “Splicing factor 3B 
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subunit”, “splicing factor U2af large subunit”, “synthetase”, “translational activator”, “U-box 

domain-containing protein”, and  “zinc finger CCCH domain-containing protein”  were found 

specifically high picroside population transcriptome. (Table 4.24) 

Table 4.24: Distribution of hubs specific for HPF-R and LPF-R identified for 8 transcriptome 
samples. 
 

Population 
ID 

PII % 
in root 

Population 
Total 
Number 
of Hubs 

Hubs 
comprising 
HPF 

Hubs 
comprising 
LPF 

Hubs 
comprising 
both HPF and 
LPF 

PKS1 0.04% Low 20 9 6 5 

PKST3 0.23% Moderate 24 8 6 10 

PKS4 0.08% Low 14 7 7 3 

PKS5 0.5% High 32 16 8 8 

PKST5 0.5% High 23 9 8 6 

PKST16 0.04% Low 26 11 8 7 

PKST18 0.35% High 24 10 6 8 

PKS21 0.02% Moderate 25 11 8 6 
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Initially the study was sought to design strategies to build gene co-expression networks 

explaining overall global system in Picrorhiza kurroa. Furthermore, it included identification 

of key modules of different classes of genes contributing to biosynthesis and accumulation of 

iridoid glycosides. This lead to designing of study into three objectives that were achieved 

sequentially. First, objective was to build co-expression networks using NGS transcriptome 

datasets of different organs/tissues and developmental stages. Second objective included 

extraction and prioritization of co-expression modules related to the secondary metabolites 

biosynthesis. Last objective of identification and mapping single nucleotide polymorphism 

(SNPs) to global co-expression networks were enrichments of the findings of previous two 

objectives. These objectives are discussed briefly in following sections.  

 

5.1.  Co-expression networks of different organs/tissues and developmental 

stages of Picrorhiza kurroa. 

The generated gene co-expression networks showed differences in interaction and degree of 

freedoms with change in the transcriptome sample. In transcriptomes created under laboratory 

conditions, it is simple to identify factors that influence how plants express their genes, but in 

the field, the dynamics of the transcriptome are more complicated and controlled by endogenous 

nocturnal rhythms, ambient temperature, the age of  plants, and solar radiation [142]. The 

significance of a node (gene) in the network as a key hub gene increases if it participates in 

more number of pathways. TopGO, an R-bioconductor utility, was used to retrieve GO 

annotations for enrichment studies. Co-expressed gene sub-networks were created from the 

global co-expressed gene network modules that had undergone GO enrichment. These modules 

were simple to evaluate compared to the main network modules because of their greatly reduced 

complexity. Additionally, it may be possible to determine if a co-expressed gene sub-network 

that is specific to a given organ can help in the manufacture of a particular class of terpenoids, 

such as phytosterols or monoterpenoid iridoid glycosides. Different, organ-specific 

phytohormonal signaling networks were identified that may be in charge of the enhanced 

accumulation of P-I or P-II. Furthermore, these global sub-networks correctly anticipated the 

transfer of isoprene units between organs as well as their storage and decomposition. 
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Additionally, different connections in shoot-only systems' terpenoid glycoside sub-networks 

that lack a specific organ for storing picrosides were observed. 

 

Based on the comparison of shoot-only systems of PKS15, PKS25, and PKSS various key 

components were noted and reported in Chapter 4. Some of the key observations revealed their 

importance in the system are discussed briefly as followed. In comparison to PKS25, PKS15 

displayed noticeably altered leaf shape, higher shoot biomass growth, a 10-fold increase in leaf 

size, and an increase of 1.8-fold in the weight of a single shoot [34]. P-I and P-II have both been 

detected, but only P-I was found in PKS15 in substantial amount (0.6%) and PKS25 in minimal 

amounts (0.01%) [72]. A set of TFs and the auxin response factor are the majors hubs 

discovered as a result of an intense swarming of linked interactions. It has been discovered that 

F-box kelch-repeat proteins govern the turnover of phenylalanine ammonia-lyase to control 

phenylpropanoid production [143]. Cytochrome P450s (CYPs) are the primary enzymes that 

catalyse the decoration of the basic terpenoid skeletons in downstream terpene production 

pathways [144]. The common node-wise interactions between PKS15 and PKS25 have 

highlighted auxin responsive interactions (Auxin response factor, Transport inhibitor response 

proteins, and Scarecrow-like proteins), the activation of mRNA, protein, and genomic DNA 

degradation pathways (E3 SUMO-protein ligase, Enhancer of mRNA-decapping protein), 

Staphylococcal nuclease domain-containing protein (SND) and some secondary metabolite-

specific interactions (F-box kelch-repeat proteins, CYP). Comparison of averaged differential 

gene expression of nodes present in the common network interactions between PKS15 and 

PKS25 revealed 8.5-fold higher expression of Endoglucanase in PKS15 compared to in PKS25, 

while expression of Cellulose synthase-like genes was 12.2 fold higher in PKS25 compared to 

PKS15. Sequence similarities between cellulose synthase-like genes and cellulose synthase 

genes lead to the hypothesis that they could produce additional plant cell wall polymers as 

glycosyl transferases [145]. The hydrolysis of lignocellulosic biomass, on the other hand, 

requires the glycosyl hydrolases known as endoglucanases [146]. SNDs have been implicated 

to be up accumulated and constitutively expressed in cells requiring a fine tuning of gene 

expression, regulation of mRNA stability and degradation, protein sequestration, or in 

redistribution of nucleic acid derivatives like nitrogen, phosphorus and nucleotide base during 

plant programmed cell death [147], [148]. To put it simply, many proteins with SND domains 

are part of the class of proteins known as liquid-liquid phase separation proteins, which may be 
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necessary for the processing, storage, and transportation of less lipophilic monoterpenoids like 

P-I or P-II [147]. According to reports, the PDR transporters transfer phytoalexin, camalexin, 

and other unknown compounds  give resistance to a number of fungal infections [149] and 

petunia  transportation of strigolactone short-distance strigolactone transport needs PDR1[150]. 

Strigolactones, which operate as auxin secondary messengers and are sesquiterpene lactones, 

have been shown to limit shoot branching and to promote favourable interactions between roots 

and arbuscular mycorrizal fungus through secretion in root exudates. Strigolactones are 

recognised to be produced by the oxidative cleavage of carotenoids by CCD, as is the plant 

hormone abscisic acid (ABA) [151]. Mutants lacking ABA are also lacking in strigolactones, 

indicating that ABA may operate to positively control the production of strigolactones [152]. 

Therefore, PDR's co-expression as a key hub in PKS15's special sub-network may aid in the 

preferential removal of sesquiterpenoids like strigolactones and tetraterpenoids or 

apocarotenoids like ABA for effective P-I or P-II storage, as well as resulting in increased shoot 

growth in PKS15 because of their transport away from the shoot system. However, it is 

impossible to completely rule out the potential of P-I and P-II being transported by the PDR 

transporter to stolons or roots. FCL alleviates dormancy in plant regeneration sections and 

negatively modulates ABA signalling in plants [153], [154]. Seed germination has been found 

to be delayed by the concentration-dependent administration of ABA to plants  [153], [154]. 

Farnesyl pyrophosphate, which is a crucial branch point in the MVA pathway and serves as a 

precursor of several terpenes including sesquiterpenes, sterols, and triterpenes, is formed when 

farnesyl diphosphate synthase catalyses the condensation of dimethylallyl diphosphate with two 

units of isopentenyl pyrophosphate [155]. FCL only reacts with farnesylcysteine, and the 

resulting products, farnesal or geranyl geranial, are further reduced to farnesol and 

geranylgeraniol [153], [154]. These prenyl alcohols are then phosphorylated to produce farnesyl 

pyrophosphate or geranylgeranyl pyrophosphate, which serve as building blocks for the 

production of terpenes [153], [154]. FCL is a significant hub in the monoterpenoid glycoside 

sub-networks that are specific to P-I in shoot-only systems like PKS15, suggesting that 

recycling of farnesylcysteine from prenylated proteins may be necessary for the manufacture 

of bicyclic monoterpenoid iridoid P-I. The ε-branch of the carotenoid biosynthesis pathway is 

controlled by lycopene epsilon cyclase, whose downregulation has been shown to increase the 

amount of β-carotene in plants [156]. To create phytosterols, CAS catalyses the conversion of 

2,3-oxidosqalene to cycloartenol [157]. In Panax notoginseng cells, RNA interference of CAS 

and subsequent overexpression of Farnesyl pyrophosphate synthase led to a decrease in 
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phytosterol levels and an increase in triterpene saponin levels [157]. As a result, our co-

expression analyses of distinct sub-networks showed increased phytosterol synthesis in PKS25 

when CAS overexpression was taken into account as a key co-expressing and interacting hub. 

Cellulose synthase was absent in PKS25, which co-expressed unique contacts but did not have 

the unique interaction involving cellulose synthase to PDR and cellulose synthase to SND. The 

mechanics and development of the shoot apical meristem have been reported to be impacted by 

cellulose production by the enzyme cellulose synthase [158]. Further, a unique co-expressed 

interaction connecting a Terpene/Isoprene synthase (IS) to Tocopherol cyclase (terpenoid-

methylated phenol interactions) and CAS have been noted in PKS15 while any interactions 

involving IS was missing in PKS25. IS was identified with similarity to a terpene synthase like 

Kaurene synthase (a diterpenoid synthase). Abiotic stress tolerance is increased in transgenic 

sweet potato plants by tocopherol cyclase, which is necessary for the production of the 

methylated phenols γ and δ-tocopherol [159]. As a result, both IS and FCL in PKS15 may be 

responsible for the supply of isoprene units for iridoid biosynthesis. On average, STKs were 

almost four times upregulated, and they were also found to be PKS25's second most important 

hub of specifically interacting coexpression. ABA sensitive gene regulation in Arabidopsis has 

been linked to STKs such as SnRK2.2, SnRK2.3, and SnRK2.6 [160]. Abscisic acid signalling 

and drought tolerance have been predominantly attributed to STK, whose silencing receptor-

like kinase class is known to impart lower ABA sensitivity and drought hypersensitivity [161]. 

In PKSS, a GDSL esterase lipase was 3.6 fold increased. Plant GDSL esterase lipases are 

versatile hydrolases that can act as thioesterases, proteases, arylesterases, and phospholipases, 

among other things [161]. Acetylajmalan esterase, a GDSL esterase lipase from Rauvolfa 

verticillata, can catalyse the creation of the terpenoid indole alkaloid ajmaline from 

acetylajmaline [162]. It is known that beta carotene hydroxylase converts beta carotene to 

zeaxanthin, and overexpression of the beta carotene hydroxylase chyB gene in Arabidopsis 

boosted the pigments found in xanthophyll (oxygen-containing carotenoids), delayed lipid 

peroxidation, and accelerated photosynthesis [163]. Co-expressed linkages to PDR in PKSS, 

which indicate adequate antioxidative protection in PKSS, were found to link antheraxanthin 

production as well. Gibberellin, a phytohormone, is essential for a number of plant 

developmental processes, including germination, root elongation, blooming transition, and 

flower formation [164]. Because of this, co-expression of proteins related to Gibberellin in 

specific interactions in PKSS indicates control of shoot development in PKSS. 
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 Grape cuttings have been shown to have improved dehydration tolerance and adventitious 

rooting when ABA 8′ -hydroxylase is inhibited by the synthetic inhibitor Abz-E3M [165]. Thus, 

whereas in PKS25 unique interactions a prominent co-expressed network reveals ABA 

biosynthesis and growth cessation (CAS, CCD, and STK as major hubs), in PKS15 unique 

interactions negatively regulate ABA biosynthesis (FCL as a major hub) and have Phytoene 

synthase and Cellulose synthase in interactive networks which highlights its promoted growth 

in comparison to PKS25. The PKSS field transcriptome, in contrast to PKS15 and PKS25, is 

able to degrade ABA (ABA 8′ -hydroxylase is the primary hub in PKSS unique sub-networks), 

while also bringing in gibberellin signalling in co-expressed unique networks.  Its shoot 

development is further aided by the distinct PKSS connections between phytoene synthase and 

tocopherol cyclase. The enzyme known as phytoene synthase is the first step in the carotenoid 

pathway, producing phytoene from geranylgeranyl diphosphate[166]. Although the carotenoid 

biosynthesis pathway's "bottle-neck" enzyme is mostly involved in photosynthetic pathways, 

carotenoids support the formation of pigment-protein complexes, aid in energy absorption, and 

transport electrons [166]. In PKS15 and PKSS, phytoene synthase was put in a distinct network 

without any connections to protein breakdown pathways, indicating continuous shoot 

development and photosynthesis. Overall Comparative co-expression network analysis 

between PKSS, PKS15 and PKS25 revealed common nodes have been observed between 

PKS25, PKS15, and PKSS based on presence of nodes and organ-specific expression (no 

interactions). Assumed from the foregoing, the global co-expressed terpenoid glycoside 

specific sub-networks were sufficiently non-informative solely based on the presence of co-

expressed nodes but could be nicely described on the basis of interactions. The 

Pentatricopeptide Repeat Containing Protein (PRC), TF, CYP, IS, and others were some of the 

key nodes. 

Furthermore, comparison of co-expression network PKSTS with PI accumulating shoot 

samples PKS15 and PKSS showed various findings reported in the chapter 4. Some important 

components are discussed as followed. Stolons have been identified as the repertoire for P-II 

and P-I. In plants, respiratory burst oxidase is regarded as the hub of the ROS network [167]. 

According to reports, triggering ROS enhances the formation of secondary metabolites such as 

lignans [168]. A collection of common enzymes, including a desaturase, a reductase, a 

galacturonosyltransferase, a flavin-containing monooxygenase, a GDSL esterase lipase, as well 

as additional lipases and phospholipases, have also been co-expressedly connected to the IS in 

the PKSTS unique sub-network. Thus, it appears that PKSTS is the primary location for the 
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production and storage of certain mono- and triterpenoids. Whereas, while Comparing with 

PKSS  coexpression network it was found that an IS is connected in a closed loop series to a 

TF, a STK, an FCL, and an ABA 8′ -hydroxylase, which closes the loop at the IS, to form the 

compact closed common interaction network between PKSS and PKSTS. The PDR transporter, 

as anticipated, was connected to the closed loop even though it wasn't common. A cluster of 

co-expressed enzymes connected to the IS in both PKSS and PKSTS suggests the production 

of mono- and triterpenoids in both shoots and stolons in field samples. The PDR transporter's 

linkage mode, or whether it is directly linked in the closed co-expressed network (as in PKSS) 

or co-expressed but not linked in the closed network, is the primary difference between the 

distinct terpenoid networks of PKSS and PKSTS. .  

 The pairwise co-expression network analysis of field grown tissues with differential picroside 

accumulation was also reported in the chapter 4. In contrast to other similarities between stolons 

and roots, a non-linked co-expressed methyltransferase with sulphate transporters and 

peroxidase was discovered. In the early phases of water stress, sulphate transport via sulphate 

transporters is recognised as xylem-borne chemical cues that come before expression of ABA 

biosynthesis genes [169].  The non-linked co-expressed sulfate network in both stolons and 

roots suggests diminished ABA signalling as a common network characteristic. A single 

network of six co-expressed genes connected in series constitute a linked network in the unique 

interactions of PKSR. These six genes are called CAS, STK, an IS, phosphoinositide 4-

phosphate-5-kinase, and a PDR. A member of the ABC transporter B family and a cation-

chloride co-transporter were found to be co-expressed with this IS. The import of terpenoid and 

phenylpropanoid moieties into the vacuole to produce picrosides may require transporters that 

are directly connected to the IS. After picrosides are produced in the roots and exported to 

various organs, the PDR transporter connected to the series network may be crucial. A NRT is 

represented by the particular interactions in PKSTS in three different sequences of related 

interactions. A beta carotene hydroxylase and an ABA 8′ -hydroxylase are present in one of 

these series connections. Aldehyde dehydrogenase, Tocopherol cyclase, Respiratory burst 

oxidase, and an IS are present in the other connected series. FCL, SND, a CCD, a Lycopene 

beta cyclase, and an ABCG transporter are among the proteins found in the other connected 

series. It is highly likely that the NRT in the network carries the terpenoid moiety to roots for 

additional terpenoid modification (acylation) and is transported back to stolons for storage 

because the IS is not directly co-expressed related to any transporters in PKSTS unique sub-

network. Farnesyl diphosphate synthase, NRT, Ent-kaurene oxidase, Tocopherol cyclase, Beta 



107 
 

carotene hydroxylase, CCD, and several other hubs were identified to exist as non-linked 

separate co-expressed small interactions. 

The common main hub between PKSS, PKSTS, and PKSR has been identified as a TF by a 

comparative common interaction analysis. Thus, it is hypothesised that all the organs under 

comparison require the biosynthesis of isoprene units, as well as their condensation, cyclization, 

and attachment of a glucose moiety to the terpenoid unit. These terpenoid glycoside sub-

networks demonstrate that isoprene units are primarily exported via long distance transporters 

following glucosylation for additional modifications such as insertion of phenylpropanoid 

moiety, etc. by the absence of transporter specific common contacts. Similar to this, after their 

production, they must be exported via transporters to other organs or to the vacuoles for storage 

or other purposes 

All the TFs in terpenoid-glycoside sub-networks were also identified based on their higher 

relevance in the biosynthesis [38].  The shared interaction of PKS15 and PKS25 is a key hub 

for a collection of TFs, including the auxin response factor Ethylene-responsive TF (ERF), 

bHLH, WRKY, WRKY59, WRKY33, and bZIP-23. Even while the auxin response factor directly 

interacted with any or all of these TFs, it was crucial that the auxin response factor also actively 

reciprocated by activating or repressing downstream genes based on the particular TF among 

the group in charge of the co-expressed circuit. Auxin response factors are often bound by the 

auxin co-receptors transport inhibitor response 1/AFB-Aux/IAA protein when auxin levels are 

low, preventing them from activating or inhibiting downstream auxin-responsive genes [170] 

[60]. Auxin response factors can activate or repress downstream genes when SCFTIR1/AFBE3 

ligases bind the auxin co-receptors for destruction at increased auxin concentrations. Rumex 

palustris under flooding conditions is claimed to induce petiole elongation as an escape 

mechanism when ethylene builds up inside submerged tissues[171]. Petiole elongation is 

delayed by ABA. By converting ABA into phaseic acid and downregulating a CCD needed for 

ABA biosynthesis, ethylene buildup in the plants prevented the synthesis of the amino acid 

ABA. Furthermore, ABA applied externally prevented the up-accumulation of gibberellin A1 

and petiole elongation. During apple ripening, a MYC2 TF bound ERF3 to activate the ethylene 

pathway gene ACS1 [172]. MYC2 and ERF2 cooperated to prevent ACS1 suppression. In order 

to fine-tune or decrease ABA sensitivity, bHLH TFs are known to bind E-box elements in the 

promoters of ABA-responsive genes, controlling a protracted delay or dormancy in plants [173] 

[174]. By directly interacting with WRKY59 in cotton plants, DEHYDRATION-
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RESPONSIVE ELEMENT-BINDING PROTEIN 2 (GhDREB2) produces ABA-independent 

drought tolerance [175]. In Arabidopsis, WRKY33 is known to adversely control ABA 

production by acting upstream of CCDs [176]. A mediator of ABA signalling, bZIP-23 controls 

brassinosteroid signalling while minimising growth arrest brought on by ABA activation [177]. 

When specialised receptors detect ABA, they transmit the signal to various Ser/Thr kinase 

groups, which phosphorylate the bZIP TFs. After such post-translational modification, the 

transcription factors (TFs) become active and bind to particular cis-acting sequences known as 

abscisic-acid-responsive elements or GC-rich coupling sites, affecting the expression of 

downstream target genes [178]. Banana fruits have been shown to feature WRKY TFs that bind 

W-box elements in the promoters of CCDs to activate ABA signalling and cold stress resistance 

[179]. Thus, in P. kurroa, the fate of other components of the co-expressed linked circuits in 

terpenoid-glycoside metabolism is actually determined by the co-expression of a particular TF 

in the primary hub of TF common to PKS15 and PKS25. Unique PKSS's connected co-

expressed loop had either a WRKY40 or an AP2D23 TF. WRKY40 overexpression has been 

linked to the production of anthocyanins triggered by injury [180]. Triple mutants of 

GOLDEN2-LIKE1 and 2, WRKY40, and ABA have been shown to exhibit ABA 

hypersensitivity, and WRKY40-related transcription modules have been shown to negatively 

regulate ABA response [181]. It has been demonstrated that ABA and gibberellin signals are 

directly regulated antagonistically by APETALA 2 (AP2) TFs with an AP2 domain [182].. A 

WRKY40 TF in PKSR unique sub-network in Fig. S13 was linked to a Gibberellin related 

protein via a E3 Ubiquitin-protein ligase probably indicating reduced ABA activation as well 

as reduced gibberellin response. Together, TFs were missing in the closed-linked loops in 

unique co-expressed terpenoid glycoside sub-network of PKS25. On the other hand, three TFs 

alternated the closed circuitry in PKS15 unique co-expressed sub-network at the same hub-

point. In PKSS unique co-expressed sub-network, two TFs alternated the same hub-point in the 

closed loop. These TFs in PKSS have been reported earlier to negatively regulate ABA and 

positively regulate secondary metabolites biosynthesis. In PKSTS unique co-expressed sub-

network, two TFs negatively regulated the CCD-ABA linked co-expressed circuit. Although 

no TFs were linked to the IS linked series in PKSR unique co-expressed network, a single co-

expressed TF separately and negatively regulated ABA response. These co-expressed closed 

links probably act like electronic circuits controlled by a group of TFs. A specific TF from this 

group of TFs might strengthen specific part/s of the co-expressed loop/s as and when required.  
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5.2. Co-expression modules contributing to secondary metabolites 

biosynthesis in Picrorhiza kurroa 

The primary objective of current study was to identify acyltransferases that are involved in 

structural modifications of major iridoid glycosides of P. Kurroa as well as to capture what 

other components interact under specific growth conditions. The next question was to identify 

cofactors indirectly involved in the biosynthetic machinery of important iridoid glycosides in 

response to external/internal stimuli. In this direction, we applied gene co-expression approach 

followed by comparative network analysis of different transcriptome samples. The findings 

confirmed that every transcriptome sample had unique outcomes that represented their overall 

system. BAHD-ATs were prominently exclusive possibly towards the last step modifications. 

The observations from experimentally cultured shoot specific network mainly addressed the 

role of stress and stress response component in the biosynthesis of secondary metabolites 

whereas field grown tissue samples mainly included the involvement of BAHD-ATs class for 

last step modification by donating different acyl groups to the catalpol structure. Interestingly, 

the transcripts with putative function of squalene monooxygenase (SQM) were observed 

throughout all the transcriptomes. Since SQM is important component in catalpol biosynthesis 

from aucubin [35] it can be concluded that catalpol is present throughout the plant (all 

transcriptome samples). From the network analysis of field grown tissue samples, it was 

observed that BAHD-AT, and S-acyltransferase were differentially expressed and showed 

higher levels of expression in PKSTS comparative to others. In case of PKSS, “O-

acyltransferase WSD1-like” showed the highest expression, whereas intermediate in PKSR. 

Furthermore, it was observed that although, BAHD was noticed as a common hub in all three 

samples, its interactions were different, highlighting the fact that the change in co-expression 

depends on the tissue and environmental conditions. All interacting nodes have been elaborated 

in the results section. Since the contents of Picroside-I and Picroside-II have been reported to 

vary in shoots, roots, and stolons [26] the findings confirmed the correlation of BAHD 

expression with Picroside-I and II biosynthesis. Furthermore, co-expressed linkage of “E3 

ubiquitin-protein ligase” in PKSR was also observed in PKSS which might be causing some 

proteasomal degradation, due to which the picroside biosynthesis be possibly affected in both 

tissues. Therefore, it can be hypothesized that picroside biosynthesis occurs throughout the 

plant tissues, however, the final steps of picrosides modifications occur in the stolon. Apart 

from this, in PKSR co-expressed linkage of BAHD were “Serine carboxypeptidase like protein” 
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(SCPL), “Glycogen synthase”, and “Cytochrome P450” specialized for other secondary 

metabolite biosynthesis. For example, SCPLs are involved in the biosynthesis of other 

metabolites by performing trans-acylation function via alternative route, Glycogen synthase 

(UGTs) is responsible for cucurbitacin biosynthesis, Cytochrome P450 is involved in the 

biosynthesis of other iridoid glycosides. In PKSS, co-expressed node “CBL-interacting serine 

threonine-protein kinase” is involved in stress tolerance whereas in PKSTS co-expressed 

linkage PPO is observed to be significant in providing substrates to BAHD-ATs. To corroborate 

findings, the molecular docking has been performed where results of 6 different BAHD-ATs 

showed specificity with respect to transcriptome samples. SS_3469 derived from shoots 

showed highest binding affinity with Cinnamoyl_CoA that is possible candidate for addition of 

cinnamoyl moiety to catalpol to form Picroside I whereas, STS_4084, STS_4241, STS_8424, 

SR_4494, and SR_4510 derived from stolons and roots showed variety of binding affinities 

with other acyl-group donors.  Therefore, docking study suggested the potential BAHD-ATs 

for final step modifications in more than one iridoid glycoside, further suggesting that major 

organs of secondary metabolites biosynthesis are mainly stolons and roots. Another important 

outcome based on presence of hubs and mostly expressing transcripts among transcriptome 

samples indicated that, “Acyltransferase-like At1g54570” (PES2) has been found as the most 

prominent hub among all the samples, PES2 genes belong to esterase/ lipase/thioesterase 

acyltransferases family having wide role in employing various classes of acyl donors for various 

metabolic activities. Further to that, it has role in abiotic stress response involving maintenance 

of photosynthetic membrane [183]. Furthermore, Both PES1 and PES2 were found expressing 

in PKS15 and PKS25 with differential expression, where PES2 was higher in PKS25 and PES1 

in PKS15, the role of up-accumulation in expression of both PES1 and PES2 affects the 

chlorophyll degradation and senescence in the leaf [184] hence may be affecting shoot biomass 

in PKS15 and PKS25. Therefore, presence of such acyltransferase as hub not only have 

importance in secondary metabolites biosynthesis but also in stress specific condition occurring 

in tissue culture growth environment of PKS15 and PKS25. In PKS15, overexpression of 

transketolase highlighted the rehydration in leaves as the function is mainly involved in 

photosynthesis. Since erythrose-4-phosphate, a product of the pentose phosphate pathway, is 

involved in the first stage of picroside biosynthesis, transketolase’s participation in the pentose 

phosphate pathway may have an indirect impact in picroside accumulation [35], [185] 

Moreover, the role of chromosomal maintenance protein is important in stress-related 
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conditions [186]. PES2 that is a type of diglycerol O-acyltransferase (DGAT) involved in TAG 

biosynthesis, is important for energy storage required in stress 

hence controlling overall biomass of shoots [187]. Overexpression of transcription factor 

“WRKY” enhances the MVA pathway that play role in secondary metabolites biosynthesis. 

Likewise, other double-fold expression transcripts identified in PKS15 network (mentioned in 

results) are mostly stress-tolerant components . In PKS25, overexpression of “Heat shock 

cognate 70 kDa” signified the drought stress condition occurring in the plant. The presence of 

“1- deoxy-D-xylulose 5-phosphate reductoisomerase” (DXPR), a component of non-

mevalonate pathway, indicated its role in picroside biosynthesis [35], [188]. The higher 

expression of “G-type lectin S-receptor-like serine threonine-protein kinase”, “RNase H family 

protein”, and “subtilisin-like” showed that transcripts are mostly involved in the plant stress 

tolerance condition, clearly highlighting the conclusion that PKS25 had abiotic stress condition 

that ignited expression level to the higher limit [189]–[191]. The stress in PKS25 shoots was 

clearly visible through reduced growth and biomass compared to shoots grown in PKS15 

(Supplementary Fig. 2). In PKSS, “late embryogenesis protein” indicated plant tolerance to 

dehydration [192]. Beta-glucosidase works as a chemical defence mechanism by producing 

glucose moieties against herbivores [193], thus important in the secondary metabolites process. 

Glutamine synthetase is also necessary for various metabolic processes of growth and 

development activity in plants [194]. Fructose bisphosphate aldolase is an important component 

of glycolysis in plants [195]. Similarly, “momilactone A synthase-like” and “ABC transporters” 

had >2 fold higher expression thus, presenting a positive sign of secondary metabolites 

biosynthesis as both the components are part of specialized biosynthetic gene clusters in 

terpenoid biosynthesis [196], [197]. Moreover, comparative analysis among all shoot samples 

showed following observations. The “callose synthase” (CalS) has been observed to have 

highest expression and significant component in PKSS followed by PKS25 and PKS15 

indicating the native response to abiotic stress in respective samples. According to reports, 

callose is important in innate immunity; therefore, the role of CalS in the network should be 

considered as a key component in samples since all samples were grown in different 

environmental conditions [198]. Furthermore, the presence of interacting node “ubiquitin-

conjugating enzyme” indicated degradation of callose that may also increase cell-cell 

movement indicating the necessity for signalling activities, evidential observations highlighted 

the similar conclusion [199]–[201]. The differences in the co-expressing linkage were also 

clearly noticed in the nodes, where CalS was found to interact with MBOAT in PKS25, DGAT 
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in PKS15, and S-acyltransferase in PKSS. The interaction with MBOAT indicates that CalS 

activation in the membrane protects the overall structure of the cell. Similarly, interaction with 

DGAT might indicate the callose stimulation in the membrane since DGAT is also a class of 

MBOAT [202]. Moreover, the interaction of S-acyltransferase also indicated the same 

conclusion as it also targets the membrane proteins. Hence, the role of CalS has been considered 

essential in overall structural maintenance and biosynthesis of secondary metabolites. In 

PKSTS, PPO is a specialized metabolizing gene in plants, its higher expression is crucial for 

phenylpropanoid pathways [203]. Amine oxidase also works in the specialized defence 

mechanism of wound healing in many plants [204]. Furthermore, cytochrome P450 is a key 

component in iridoid glycosides biosynthesis that catalyses hydroxylation reactions [205]. 

Overexpression of “Cbl-interacting protein kinase” has indicated a stress response in Stolon  

[206]. Overall, production of secondary metabolites was one of the stress response activities 

that was emphasised in individual network of PKSTS as this is the prime metabolizing and 

storage organ for most of secondary metabolites in P. Kurroa, including iridoid glycosides. In 

PKSR- the root-derived network, Glutamate decarboxylase showed the synthesis of gamma-

aminobutyrate (GABA), which is essential for plants in various growth and development 

activities like cytosolic pH regulation, carbon movement in the TCA cycle, transport, and 

storage [207]. The overexpression of transcription factor Bzip53 in roots has been reported as 

essential for reducing salt stress conditions by affecting the primary metabolic function of 

gluconeogenesis and amino acid catabolism; furthermore, it also orchestrates the lateral root 

formation in some plant species [208], [209]. Heat shock cognate 70 kDa is a drought stress 

response component in normal conditions and helps plants to adapt to stress conditions such as 

high temperatures; therefore, higher expression was observed in sample [188]. EBF protein is 

an important component of ethylene response and signalling of it corresponds towards the 

proteasomal degradation and ubiquitination of EIN3, resulting in ethylene response necessary 

for root elongation [210]. Apart from this, Calcium-binding proteins, 4-hydroxy-3-methylbut-

2-en-1-yl diphosphate ispG, and Phosphoenolpyruvate carboxykinase are responsible for root 

hair formation, component in non-mevalonate pathway, and involved in root elongation in 

lateral stages respectively [211], [212]. Overall individual network study as well as supporting 

docking results revealed that major sites of secondary metabolites biosynthesis are stolon and 

roots as most of associated enzymes were present in individual networks of these tissues. 
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5.3.  Single nucleotide polymorphisms (SNPs) mapped to the global co-

expression networks  

The main objective of this study was to develop a strategy to capture SNPs mapped to functional 

modules through combination of GBS and gene co-expression networks. Existing approaches 

utilizing genome wide studies for scanning high density markers has enabled good quality 

outcome for plants and animals [213]. Such studies utilized anonymous techniques based on 

DNA-finger printing i.e. RFLP, RAPD, AFLP and SSRs that had less chances of targeting the 

expressed regions [214]. The SNP markers from expressed regions were mostly captured 

through the availability of expression sequence tags databases that are mostly available for 

model organisms [213]. GBS techniques are ultimately a cost effective solution for plant 

breeding of such species that are not widely studied  [214]. Such technique have been utilized 

to identify a larger number of SNP biomarkers in various plant species [81], [215], [216]. 

Although, it is important to identify and categorise such biomarkers on the basis of functional 

and structural role in the overall system. Hence, our study has proposed a novel approach 

utilizing mining and mapping of SNPs containing genomic fragments coupled with 

transcriptome-enabled gene co-expression networks.  

GBS data of 37 P. kurroa populations were analysed individually through Denovo strategies for 

identifying SNPs specific towards high versus low P-I content. The mapping of SNPs 

containing HPF and LPF on transcriptomes showed favourable probabilities of molecular 

markers in the expressed regions for identifying relationships among diversified populations. 

The outcomes of initial analysis in combination with gene co-expression network analysis 

showed large density of interactions, representing the overall system in Picrorhiza kurroa. The 

transcriptomes have previously shown a wide range of Picrosides accumulation under various 

experimental conditions, that might be due to effect on biological process, cellular components, 

and molecular function. In this context, certain modules such as chloroplast, photosynthesis, 

signal transduction, root development, defence response, shoot development, and transferases 

were predominantly captured among the interacting nodes of SNPs containing transcripts. The 

driving components of secondary metabolites production are signal transduction mechanisms 

impacted by environmental complexity therefore, crucial for commercial production  [217]. 

The shoot development, photosynthesis and chloroplast development and growth are mainly 

affected by light intensities influencing the overall secondary metabolites accumulation in 

plants [218].  Protein kinases modulate series of defence responses therefore leading towards 
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specialized metabolic pathways [219]. Similarly, relevance of other functional modules such as 

transferases, transporter activity, root development and vacuoles is important in capturing SNPs 

containing transcripts. The combined network of the SNPs containing transcripts showed 

potential coverage of interactions among each functional module.  The categories of SNPs were 

classified as transition and transversions based on the point mutation it possesses, such 

categories have been reported in various model crop species [214] as both have significant 

effects in plant breeding strategies. The hubs among specific populations of high/low P-I with 

similar fragments, that is LPF for low populations and HPF for high populations were 

considered as favourable outcomes. “protein transport protein SEC61 subunit” a part of Sec61 

ER protein that control the susceptibility against fungus infection in plants, therefore considered 

to be an important factor for defence response [220]. “4-coumarate--CoA ligase-like”(4CL) is 

an important component of iridoid glycoside pathway, further studies for gene paralogues have 

reported that the gene makes it crucial to be studied at SNP level for variation and its 

relationship with picroside accumulation [74]. Aldehyde oxidases are enzymes that oxidises 

aromatic and non-aromatic specialized aldehyde, are important response components against 

virus infection in plants therefore considered an important factor for growth and development 

[221]. Protein phosphatase 2C 55-like (PP2C) are key components of signal transduction in 

higher plants [222] are negative modulators of various protein kinase activities specific towards 

stress response especially in ABA signalling [223] therefore, SNP identification in such 

component is considered of high importance. Leucine aminopeptidase is also a component of 

the defence response signalling [224] hence is considered to be a key component of the study. 

Overall, these hubs were specific for LPF fragments specifically consisting of transversions and 

were only found in co-expression network of low P-I content transcriptome. In case of high P-

I population co-expression network hubs mapping with HPF were primarily focused. In 

particular arginine N-methyltransferases are mostly reported to influence the plant growth and 

development in model plants species [225]. Helix-loop-helix DNA-binding domains are 

transcription factors, that have been previously reported in regulation of picrosides biosynthesis 

[38]. Ankyrin repeat domain 24 are part of ankyrin repeat genes studied for stress tolerance in 

other plant species [226]. Cold acclimation protein was also one of the major hubs in high 

population transcriptome coexpression network with specific HPF, show supporting 

adaptations of Picrorhiza kurroa in cold alpine regions [227]. Uroporphyrinogen decarboxylase 

a key enzyme for biosynthesis of cholorophyll and heme in plants[228] was also a major hub 

specifically for high P-I accumulation.  
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In case of populations based on the PII% in roots, unique hubs specific to HPF-R and LPF-R 

were focused. The hubs corresponding to LPF-R and mapping only with transcriptome of low 

PII% were shortlisted.  “HEAT repeat” is an important component of innate immunity in plants 

[228]. “PfkB-type carbohydrate kinase family protein” consists of FRUCTOKINASE-LIKE 

PROTEIN (FLN) that is reported to have direct effect on plastid-encoded polymerase (PEP) 

[229] is an important chloroplast gene, therefore, could be crucial for growth and development 

related functions. “receptor-like protein kinase” (RLKs) are reported to have evolutionary 

diversity in different domains such as leucine-rich repeats, self-incompatibility domains, 

epidermal growth factor repeats and lectin domains therefore their presence in SNPs containing 

hubs makes  probable candidates [230], “sucrose transporter” majorly support sink for sucrose 

transport in plants for growth and development [231].Overall the hubs containing HPF and LPF 

extracted from populations based on picroside concentrations in different tissues can be very 

crucial and ideal candidates for biomarkers analysis.  
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CONCLUSION 

The present work consists of novel approaches of gene co-expression networks that can be 

beneficial for addressing complex systems level problems of large transcriptome datasets, 

particularly in medicinal plant species which are endemic in the Himalayan region with least 

genomic resources. The comparative transcriptome profiling using network analysis has 

envisioned a global approach that was not yet attempted in Picrorhiza kurroa. The study has 

highlighted key components playing indirect role in the specialized metabolites biosynthesis 

through highly interacting components or as a hub in the co-expression network. Furthermore, 

the study on acyltransferase specific networks have addressed catalytic validation of certain 

components through molecular docking. In addition, SNP analysis using diverse GBS data of 

41 populations with different picroside concentrations identified SNPs in genes that are also 

mapping in functional co-expression networks. Overall, the approaches developed in the study 

can be beneficial in other plants species important for specialized metabolites biosynthesis.  

Limitations of the Study 

Overall, the study has proposed various promising future endeavors that can be achieved by 

validating through wet lab experiments. Although there are still many limitations that need to 

be addressed. Firstly, the diversity of the dataset is optimum and acceptable, but it lacks the 

quantitative point of view that can be extended in separate studies with having specific 

questions of interest. Secondly, the study has majorly focused on RNA-seq data that relies on 

functional annotation based on the sequence similarities therefore there are major chances of 

having constraints based on query coverage and sequence identity thresholds. Third, the current 

study is limited to addressing the loopholes in secondary metabolites biosynthetic pathways 

specifically for iridoid glycosides other functional modules can also be explored. Fourth, study 

is only limited to population specific SNP analysis advanced characterization of SNPs into 

synonymous and non-synonymous category can be explored. 

.  
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FUTURE PROSPECTS 

 Expanding co-expression analysis to more NGS transcriptomes from different 

accessions of P. kurroa and to map SNPs onto key modules and genes (associated with 

metabolites and biomass). 

 the study can also be extended using approaches of integrative omics that can only 

possible when new multi-omics dataset such as genomics, metabolomics and 

transcriptomics get generated for opening new scope of study. 

 In-depth Network based analysis of other GO related terms may play crucial role in 

various biological pathways which would require further exploration. 
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