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142 Nanotechnology-Driven Engineered Materials

ABSTRACT

In this generation of semiconductor-based miniature gadgets, it is 
always an intriguing issue to understand the underlying mechanism of 
these highly sophisticated devices. Systematic exploration uncovers the 
fascinating world of nano-scale physics; however, a deeper probe actu-
ally unearths the salient nature of electron–hole interaction which is the 
soul of semiconductor physics. In this essay, we plan to shed some light 
on the interplay of different interactions in electron–hole systems. This 
study is purely theoretical; however, we put forward recent experimental 
successes at suitable places. Here, we explicate the intricacies involving 
electron(hole)–electron(hole) and electron–hole interaction in the realm 
of mean-field theory. To make our description more comprehensive and 
complete, we elaborate the theoretical analysis by means of both path 
integral formalism and canonical transformation method. The discussion 
clearly suggests that the interplay of intra-layer and inter-layer interactions 
results in the formation of several exotic phases such as Sharma phase and 
Fulde–Ferrell–Larkin–Ovchinniov (FFLO) phase.

6.1 INTRODUCTION

The last century, widely believed as the century of physics, has witnessed 
several experimental and theoretical accomplishments in condensed matter 
physics and optics, which has paved the way for future industrial revolution 
in communication and computation. There was an enormous jump in terms 
technology when vacuum diodes were replaced by semiconductor transis-
tors, but that was a good 60 years back. As we are exhausting the ceiling of 
the Moore’s Law,1 it is now evident that we need to try something different 
while keeping the flavor of our old prodigy (semiconductor physics).

The emergence of ultra-cold atom research in the last decade,2–10 
has widened the possibility to study different exotic phases of matter 
by controlling the interaction. The smooth transition of Cooper pairs 
from BCS superconductors to Bose superfluid of composite bosons for 
trapped atoms is one of such developments. This phenomenon is known 
as Bardeen-Cooper-Schrieffer–Bose-Einstein-Condensate (BCS–BEC) 
crossover. Although trapped atoms represent an ideal testing ground for 
a fundamental understanding of the BCS–BEC crossover, technological 
applications exploiting the occurrence of condensates will most probably 
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Electron–Hole Bilayer Systems in Semicondutors 143

rely on semiconductor systems. In these systems, excitons, made up of 
electrons and holes, play the role of composite bosons.11 Formation of exci-
tons between spatially separated electrons and holes and their subsequent 
condensation have long been predicted and arguably observed nearly 30 
years later experimentally.12

The main objective of this chapter is to provide a comprehensive theo-
retical guide to deal with electron–hole (e–h) systems in the mean-field 
level. We start with a brief description of BCS–BEC crossover in ultra-
cold atomic gases, excitonic systems, and the meaning of crossover in e–h 
systems. Usually, an exitonic system is modeled by taking into account 
their inter- and intra-species interactions. Here we first elaborate the system 
in the absence of intra-layer interaction and later incorporate it. However, 
for a better theoretical view, we employ two different mathematical tech-
niques, namely path integral formalism and canonical transformation, in 
our discussion. At the fag end, we briefly comment on the possible way to 
include impurity in these systems. We conclude with current experimental 
status in this field with possible future applications.

6.1.1  BCS–BEC CROSSOVER

The experimental realization of Bose-Einstein condensate in trapped 
ultra-cold alkali gases13,14 appeared as a new ray of light to the science 
community. For its broad appeal, people from diverse communities of 
physics, such as atomic and molecular physics, condensed matter physics, 
and nuclear physics, came under a single umbrella. The excitement led 
to the study of both bosonic and fermionic gases. Further, the application 
of Fano-Feshbach resonance (which we will discuss later)15–17 in atomic 
gases18–21 gave freedom to evolve a composite boson state to Cooper pairs 
passing the crossover.

In normal superconductors, electrons with opposite spins pair to form 
Cooper pairs below the superconducting critical temperature. The average 
pair size ξpair for these superconductors is much larger than the mean inter-
particle distance 1

Fk − . Therefore, the quantity ξpairkF is much larger than 1. 
So the Cooper pairs are largely overlapping and it is not appropriate to 
consider them as spin-zero bosons. It is better to appreciate them as corre-
lation of two opposite spin fermions at a certain distance and BCS theory 
holds for them perfectly. But the advent of high-temperature supercon-
ductor, where ξpairkF is of the order 5−10, forced to think beyond the BCS 
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144 Nanotechnology-Driven Engineered Materials

theory. The coupling between the fermions in these novel superconductors 
suggests an intermediate state between Cooper pairs and composite bosons. 
This intuitive idea prompted to develop a theory which can connect both 
the BCS theory for Cooper pairs and BEC for composite bosons. Already at 
that time, there were some works23–25 where the evolution of the fermionic 
pairs from Cooper pairs to composite bosons had been studied. Since the 
transition between these two limits occurs without an intermediate phase 
transition, the phenomenon has referred as BCS–BEC crossover. Figure 6.1 
gives a physical feeling of the situation where densely packed Cooper pairs 
and sparsely distributed composite bosons are on both sides and in between 
there exist the strongly interacting fermionic pairs which are the main 
players in the crossover. Subsequent to the discovery of the high tempera-
ture superconductors, the interest in the crossover physics has surged.26–31

FIGURE 6.1 Representation of BCS–BEC crossover pictorially.22

The beauty of the BCS ground state is that it not only describes the super-
conductivity pretty efficiently but also contains the essence of the bosonic 
limit. If one starts from the BCS ground state wave function Ψ >  and carries 
out the necessary algebraic rearrangements in the following manner,

 
† †
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∏
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Electron–Hole Bilayer Systems in Semicondutors 145

then one can define the operator † † †( ) ,k kk
b g k c c↑ − ↓= ∑  which contains 

fermionic pairs. However the defined operator can not be regarded as a 
true bosonic operator because,

 [ ] 2, ( ) (1 k k
k

b b g k n n c↑ − ↓= − − ≠∑  number. (6.2)

In certain conditions when < nk,σ ><< 1, [b, b†] ≃ 1, the b turns out truly 
a bosonic operator and in that situation,

 †| exp( ) | 0bΨ > = >  (6.3)

represents a bosonic coherent state or a condensate.23–25

The simplest description of the BCS–BEC crossover can be given at 
the mean-field level for a homogeneous system in the zero temperature 
limit. In this situation, it is necessary to analyze a pair of coupled equation 
which reads,

 3 2

k 1
2 4(2 ) k F

d m m
E ak ππ

 
− = − 

 
∫  (6.4)

 k
3

k

k 1
(2 )

d n
E
ξ

π
 

− = 
 

∫  (6.5)

where the notations are the usual BCS notations. Precisely, ξk = k2 / 2m – µ, 
Ek = 2 2

k kξ + ∆  and the bare coupling strength has been replaced by the 
s-wave scattering length. And eq (6.4) is known as gap equation and 
eq (6.5) is known as density equation. The original gap equation actu-
ally contains an ultraviolet divergence (originated from the assumption 
that the contact potential governs fermionic interaction); however, here 
the equation is suitably regularized to avoid the mentioned divergence. 
The coupled equations can be solved simultaneously for a given density 
and coupling. These solutions are plotted in Figure 6.2 where we have 
evaluated the pairing gap (∆) and chemical potential (µ). In describing the 
chemical potential, two different normalizations are adopted depending on 
the sign of the chemical potential. When µ > 0, it has been normalized by 
the Fermi energy 2( / 2 )F Fk m∈ =  and in the negative side we used two body 
binding energy 2 1

0( ( ) )Fma −∈ =  to normalize.

Ap
pl

e 
Ac

ad
em

ic
 P

re
ss

Au
th

or
 C

op
y

For Non-Commercial Use



146 Nanotechnology-Driven Engineered Materials

FIGURE 6.2 Variation of order parameter (pairing gap) and chemical potential with 
coupling strength in a homogeneous system.

6.1.2 EXCITONS

The manifestation of BEC is based on the wave nature of particles. There-
fore, it is obvious that de Broglie hypothesis plays a crucial role in under-
standing the condensate. It can be shown that the de Broglie wavelength 
gets longer with decrease in temperature. When atoms are cooled to the 
point where the thermal de Broglie wavelength is comparable to the 
inter-atomic separation then BEC formation actually starts. The relation 
between the transition temperature and peak atomic density (n) can be 
estimated as 3

dBnλ  = 2.612 where the de Broglie wavelength (λdB) is defined 
as λdB = h/mv = / ,Bh mk T  where m is the mass of the atom, kB is the 
Boltzmann constant, and T is the temperature. The critical temperature for 
the transition works out in the range of nano-Kelvin. The above descrip-
tion also points out that the de Broglie wavelength is inversely propor-
tional to the square-root of the mass of the particle. Therefore, it took a 
long time to develop the necessary cooling techniques to create BEC with 
heavy atomic mass. For solid-state systems, excitons in semiconductors 
have long been considered as a promising candidate for BEC because of 
their light mass as compared to the neutral atoms. Usually, effective mass 
of exciton is considered as twice the mass of electron. Now if we employ 
this mass in the de Broglie theory, the critical temperature for transition 
in two dimension turns out about 1K. The possibility of achieving higher 
critical temperature in excitonic systems infuses additional interest in the 
research community. Unfortunately, excitons recombine quickly, too fast 
to allow a condensate to form. Although excitons coupled to light confined 
within a microcavity can form hybrid particles that do live long enough to 
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Electron–Hole Bilayer Systems in Semicondutors 147

condense, such condensates require a continuous input of light.32 This is 
known as exiton-polariton condensate which has actually been observed 
very recently.33 However, a very recent study based on two mono-layers of 
graphene separated by an insulating material poses promising platform to 
realize excitonic condensate.34,35

Excitons can be defined as a bound state of an electron and hole which 
are attracted to each other by the electrostatic Coulomb force. It is an elec-
trically neutral quasiparticle that exists in insulators, semiconductors, and 
in some liquids. An exciton can form when a photon is absorbed by a 
semiconductor. This excites an electron from the valence band into the 
conduction band. In turn, this leaves behind a localized positively charged 
hole. The electron in the conduction band is then attracted to this localized 
hole by the Coulomb force. This attraction provides a stabilizing energy 
balance. The recombination of the electron and hole, that is, the decay of 
the exciton, is limited by resonance stabilization due to the overlap of the 
electron and hole wave functions, resulting in an extended lifetime for the 
exciton.

6.2 BCS–BEC CROSSOVER WITH EXCITONS

As mentioned earlier, electronic systems in semiconductor devices provide 
an alternative and technically more viable route for physical realization 
where BCS–BEC crossover. Electrons and holes can form bound states 
due to the attractive Coulomb interaction between them. These bound 
states are popularly known as excitons. Thus excitons are the composite 
bosons in this system. The interaction strength can be changed by varying 
the density. Here, we must note that in ultra-cold atomic systems, the 
controlling parameter is either s-wave scattering length or the density, 
whereas in semiconductor systems, it is only the density or the concen-
tration of electrons and holes. Another significant difference from usual 
unitary Fermi gas is that the most commonly used interaction in those 
systems is short-range contact interaction, whereas in semiconductors, it 
is usually long-range Coulomb interaction. The long-range ordering due 
to Coulomb interaction complicates the emergence of condensate in the 
excitonic systems. Of late, several theoretical ideas have been floated to 
tackle this problem.36–39

However, the condensation phenomenon of excitons is a fairly old 
issue. It was first predicted almost 50 years before by Blatt et al.40 In the 
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148 Nanotechnology-Driven Engineered Materials

early 1980s, Comte et al. studied the Bose condensed ground state of 
an electron–hole gas in a simple model semiconductor, as a function of 
density, using a mean field variational ansatz.41,42 Later with the advent 
of new technologies and experimental observation of weakly interacting 
BEC, the research on excitonic condensate received a new impetus. A 
keen interest is paid to the bilayer quantum-well systems realized in semi-
conductor hetero-structures. In recent years, using electrical and optical 
techniques exciton condensation has been observed in several different 
systems. Quantum Hall experiments at half-filling investigate BEC 
in electron–electron and hole–hole bilayers.11,43,44 Optically generated 
bilayer excitons also show evidence for condensation.12 Recently, excitons 
coupled to photons to form polaritons with even smaller mass leading to 
higher condensation temperatures have been studied theoretically45 and 
experimentally.46,47

6.2.1 THEORY OF EXCITONS

The first theoretical mean-field analysis of excitons can be found in 
[Refs.41 and 42] However, they involved equal electron and hole densi-
ties leading to full pairing. In recent years Pieri et al. extended the above-
mentioned pioneering works for density imbalance.48 The investigation 
reveals a crossover in the phase diagram from the BCS limit of over-
lapping pairs to the BEC limit of non-overlapping tightly bound pairs. 
Further, it was noted that different novel phases emerge in the crossover 
region when the densities of electrons and holes are varied independently. 
However, this analysis only takes into account the inter-layer Coulomb 
interaction between the electrons and holes, thereby it neglected the intra-
layer electron–electron and hole–hole Coulomb interactions. Later Subasi 
et al. overcame this deficiency.49 Hence a typical bilayer Hamiltonian in 
the mean-field level consists of a kinetic energy/hopping term, intra-layer 
interaction term, and inter-layer interaction as described in eq (6.6).

 
1 2 2 1

1 2

1 2 q 2 1 2 2 1
1 2 1 2

† † † †
k k k k k k q k q k q k k

k k ,k ,q

† † † †
q k q k 1 q k q k q k k

k ,k ,q k ,k ,q

1( )
2

1 1 .
2

a b aa

bb ab
k k

H a a b b U a a a a
V

U b b b b U a b b a
V V−

+ −

+ + −

= ∈ + ∈ + +

+

∑ ∑

∑ ∑
 (6.6)
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Electron–Hole Bilayer Systems in Semicondutors 149

The basis states for electrons and holes are chosen to be plane wave states. 
The operators † †

k k k k/ ( / )a a b b  are creation and annihilation operators for 
electrons and holes, respectively. The single particle energies are denoted 
by k k, ,a b∈ ∈  and the matrix element Uq with respect to plane wave states 
becomes the Fourier transform of the corresponding two-body interaction,

 Uq = ſ e
–iq·r U (r)dr. (6.7)

In eq (6.7), Uaa, Ubb, and Uab denote electron–electron, holehole, and elec-
tron–hole Coulomb interactions, respectively. The explicit forms of the 
Coulomb potentials can be noted as,

 
2 2

q q q
2 2, ,aa bb ab qde eU U U e

q q
π π −= = =
∈ ∈  (6.8)

where d denotes the distance of separation between electron and hole 
layers.

Here, we plan to elaborate the discussion in the following manner. First 
we will explain the bilayer systems in the light of only the inter-layer inter-
action (i.e., Uaa = Ubb = 0).48 Later we will move forward and include the 
intra-layer interaction.49

6.2.1.1 IN ABSENCE OF INTRA-LAYER INTERACTION

If we neglect the intra-layer interaction for the time being, eq (6.6) can be 
rewritten as,

 
† † † † *

k k k k k k k k -k k k k
k k

( ) ( ).a bH a a b b a a b a−= ∈ + ∈ + ∆ + ∆∑ ∑  (6.9)

Here 2 2
k kk ' k' k' kk'

and / 2 ,ab a
bU a b k m−∆ = − 〈 〉 ∈ =∑   where a and b denote the 

electron and hole respectively.
Now eq (6.9) can be analyzed by using path integral formulation as 

well as canonical transformation. However, here we plan to explicate the 
path integral formalism at first and in the latter half (with intra-layer inter-
action) we will explain the canonical transformation. This will enable the 
readers to view the bilayer problem through two different mathematical 
angles, albeit both the cases are akin to each other.
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150 Nanotechnology-Driven Engineered Materials

6.2.1.2 PATH INTEGRAL FORMALISM

The path integral formalism deduced here is constructed in analogy with 
the BCS theory. However, compared to the BCS theory, the single particle 
energies are not equal to each other (i.e., a b

k k∈ ≠ ∈ ) due to the difference in 
electron and hole mass. Let us now introduce the chemical potential (µ) 
in the mean-field Hamiltonian which will ensure the density imbalance. 
Hence eq (6.9) reads,

 

† † † † *

,

† † † *

,

[ ]

[ ],

k k k k k k k k k k k
k k

k k k k k k k k k
k k

H N a b b a

a b b a

σ σ

σ

σ

σ

µ σ σ µ σ σ

ξ σ σ

− −

− −

− = ∈ − + ∆ + ∆

= + ∆ + ∆

∑ ∑
∑ ∑

 (6.10)

where σ ∈ {a, b} and ξk = ϵk − µ. Hence the quantum partition function in 
path integral form can be written as, [ , ] effSZ D e−= ∫ ∆ ∆  where,

 3 1

0
[ Tr ln ].effS d x d G

U
β

τ −∆∆= −∫ ∫  (6.11)

G−1 is defined as Nambu propagator (inverse Greens function). The Greens 
function contains the free particle Green’s function ( 1

0G− ) and the particle–
particle interaction incorporated through self-energy (Σ). Thus G−1 = 1

0G−  + Σ. 

Since the thermodynamic potential can be expressed as Ω = − 
ln Z
β

 and 

density as n = 
µ

∂Ω−
∂

, therefore a careful analysis of eq (6.11) leads to

 

3 1

0

1

,

1

,

1 ln [ , ] exp Tr ln

1 ,ln exp Tr ln ( , ) , exp[ ]

1 Tr

i
i ab

k ii

k i i

n D d x d G
U

VG k i D
U

G G

β

ω

ω

τ
β µ

βω
β µ

β µ

−

−

−

   ∂ ∆∆ = ∆ ∆ − −   ∂      
  ∂ ∆ ∆ = ∆ ∆ −   ∂   
 ∂=  ∂ 

∫ ∫ ∫

∑ ∫

∑

 (6.12)

where the suffix, i ∈ {a, b}, the ʃ D[∆ ∆ ] integral reduces to 1 through 
Grassmann identity. The explicit definition of the Green’s function can be 
noted as follows,

Ap
pl

e 
Ac

ad
em

ic
 P

re
ss

Au
th

or
 C

op
y

For Non-Commercial Use



Electron–Hole Bilayer Systems in Semicondutors 151

 
1 and

a
kk

b
kk

ib
Dkk D

a i
kk DD

i
G G

i

ω ξ

ω ξ

ω ξ
ω ξ

∆−
−

−∆

 ∆ +  = =   −∆   

where, 2 2( ) .a b a b
k k k k kD iω ω ξ ξ ξ ξ= − − − − − ∆  Hence, from eq (6.12),

 
,

,

0 01 Tr
0 1

1 .

a
k k

b
k k

i
D D

a i
k i

D D

b
k

k i

n
V

i
V D

ω ξ

ω ξ
ω

ω

β

ω ξ
β

− ∆

∆ −

    =      
+

=

∑

∑
 (6.13)

D can be decomposed in a factorized form as follows, D = (iω − ∆ξk − Ek) 
(iω − ∆ξk + Ek) = (iω − E+)(iω + E−). We carry out the Matsubara frequency 
sum from eq (6.13) as,

 ( )
,

–

1 1 ( )
)( )

1 1 1 1 .
2

b
k

a
k i

k k
k k

k k k

i
n f i

V i E i E

f f
V E E

ω

ω ξ ω
β ω ω

ξ ξ

+ −

+

+
=

− +

    
= + + − −    

     

∑

∑  (6.14)

In a similar fashion we can also evaluate nb as,

 ( )–1 1 1 1 .
2

k k
b k k

k k k

n f f
V E E

ξ ξ +    
= + + − −    

     
∑  (6.15)

Here f (E) is defined as the Fermi function at zero temperature and

( )k k k

k
k

k

k k k

1 if 0
0 if 0

1 .
2

a b
a b

E
f

E

E E ξ

ξ µ µ

±
±

±

±

 <=  >
= ± ∆

∆ = ∈ − − ∈ −

The other relevant equation known as gap equation can also be derived 
from the effective action as,
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( )3 1

0

–1

'

, Tr ln

ln .

eff
ab

kkk

S d x d G
U

V G
U

β
τ

β

− ∆ ∆ ∆ ∆ = − −  
 

∆ ∆= − −

∫ ∫

∏

It can be shown that | − G−1| = D, where D is same as defined earlier. One 
can also write, ln ∏k ≃ ∑k ln. Hence,

 
,'

, — lneff
k ikk

S V D
U ω

β ∆ ∆ ∆ ∆ =  ∑  (6.16)

Applying the saddle point approximation effSδ
δ ∆

 = 0, we can rewrite eq 
(6.16) as
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'
' ' '
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1 ( )
( )( )
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1 1 .
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k ikk
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k ikk
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U D
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f i

U i E i E

f f
E

U f f
V E

ω

ω

β

ω
β ω ω+ −

+ −

+ −

∆ ∆− =

∆ ∆
=

− +
∆  = − − 

∆  = − − − 

∑

∑

∑

∑  (6.17)

One can now solve eqs (6.14) ,(6.15), and (6.17) self-consistently to study 
the effect of density imbalance. However, before elaborating the obtained 
results of Ref. [48], it is important to discuss the units of the observables. 
All through this discussion, the physical quantities are in Rydberg units, 
that is, length is measured in effective (excitonic) Bohr radius 

2

2 ,Ba
me

ε=   

momentum in 1/aB, and energy in effective Rydberg (
2 2

2Ryd
22 B B

e
ama ε

= = ). 

The reduced mass m is defined as 1/m = 1/ma + 1/mb where ma = me and mb = 

mh are the band mass of the electron and hole, respectively. As mentioned 
before, the bilayer system is characterized by the electron– hole densities 
or by the average density parameter (rs) and population polarization (α). 
α signifies the population imbalance and is defined as the ratio of density 
difference and total density. In other words, rs and α can be described as,
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 2 2

1 and
2

a b a b

a bB s

n n n n
n

n na r
α+ −

= = =
+  (6.18)

The BCS and BEC regimes are defined by means of average inter-particle 
spacing, that is, rs < 1 implies closely packed systems thereby it is noted as BCS 
regime. Otherwise when rs > 1, it is considered as BEC regime. By solving the 
coupled density and gap equation it is possible to study the smooth transition 
of the physical observables from one region to another region. Hence, we can 
borrow the BCS–BEC crossover analogy from ultra-cold atomic systems to 
the semiconductor systems without losing much of the generality.

Self-consistent analysis of eqs (6.14), (6.15), and (6.17) results in eval-
uation of the gap function. In Figure 6.3a, the wave-vector dependence of 
gap function is depicted. One can observe that at low rs (BCS regime), there 
exists a distinct peak for the gap function; however, this peak smoother out 
as we increase the average inter-particle distance, that is, we move from 
highly overlapping BCS system to non-overlapping BEC system. Similar 
density-induced BCS–BEC crossover had already been studied in ultra-
cold atomic systems.53,54 Figure 6.3b describes the maximum value of the 
gap function for different densities with varying degree of imbalance. 
Here we observe that the maximum value exists at about zero average 
chemical potential (µ = (µe + µh)/2). This actually implies a robust para-
digm of superfluidity in the crossover region. Interestingly, this conclusion 
was also made from the perspective of ultra-cold clean Fermi gases53 and 
dirty Fermi gases.53 One can also notice that the magnitude of the energy 
gap actually reduces with increase in density imbalance.

 (a) (b)

FIGURE 6.3 (a) The dependence of wave vector on gap function as balanced density 
(α = 0) at various values of rs. (b) Variation of max{∆k} at different imbalances and different 
densities. For both the figures the inter-layer separation was considered as unity (d = 1). 
(Reprinted Ref [51] with permission from the author.)
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Figure 6.4 shows the zero-temperature phase diagram for d = 1. We 
can identify various phases using ∆k, determined from eq (6.17), and the 
superfluid density ρs. Within mean-field theory at T = 0 ρs is defined as,

 
( )3

e e h h
,

1
4 k

j

j
s dE

j
dk

k k

k
m n m n

λ

λ

λ

λ
ρ

π
=

= + − ∑  (6.19)

Here, jk λ  is the j-th zero of kEλ  = 0 with λ = (+, −). The zeros of quasi-
particle energies, kE+  ( kE−), can be found only for imbalanced density 
scenario while no zero occurs for α = 0.

The normal phase (N) corresponds to the trivial solution ∆k = 0. The 
Sarma phases corresponds to nonvanishing ∆k when α ≠ 0 and positive 
superfluid density ρs. The S1 and S2 denote the Sarma phases for one and 
two Fermi surfaces, respectively. There will be one zero of kEλ  (j = 1) for 
the S1 phase (one Fermi surface) and two zeros (j = 1, 2) for the S2 phase 
(two Fermi surfaces). A negative value of ρs in eq (6.19) indicates that the 
Sarma phase is unstable toward a phase with a spontaneously generated 
superfluid current, which we associate with the Fulde–Ferrell–Larkin–
Ovchinniov (FFLO) phase.56,57

One intriguing aspect of Figure 6.4 is the dependence of the phase 
diagram on the sign of α. In particular, while the boundary of the normal 
phase does not depend appreciably on the sign of α, the region of stability 
of the Sarma phase with respect to the FFLO phase depends dramatically 
on the sign. For α < 0, the phase diagram is dominated by the FFLO phase, 
with the S1 phase being confined to the extreme BEC region, while for 
α > 0, the FFLO phase is compressed into the region of small rs.

FIGURE 6.4 Zero temperature phase diagram for d = 1. The dashed line indicates µ = 0 
and the dashed dotted line indicates the separation between S1 and S2 phases.51

Ap
pl

e 
Ac

ad
em

ic
 P

re
ss

Au
th

or
 C

op
y

For Non-Commercial Use



Electron–Hole Bilayer Systems in Semicondutors 155

6.2.1.3 CANONICAL TRANSFORMATIONS

We can now introduce an extra complexity in the system, namely the intra-
layer interaction, to explore further. However, for a transparent under-
standing of the mean-field formalism here we will follow the canonical 
transformation method to obtain the necessary mean-field equations. Our 
starting point is again eq (6.6) and now q q 0.aa bbU U= ≠  One can now apply 
Bogoliubov transformation with operators † †

k –kandα β  which are linear 
combinations of electron/hole creation/annihilation operators defined by

 
† †

k k k k –k k –k k k
† * † * † † *
k k k k –k k k k k k

, ,

, .
ku a v b u b v a

u a v b u b v a

α β
α β

−

− −

= − = +

= − = +

These operators create/annihilate normalized states with excess quasi-
particles orthogonal to |Ψ〉BCS, which has an equal number of electrons and 
holes. We can also define the inverse transformations as,

 
* † * †

k k k k –k k –k k k
† † * † † *
k k k k –k k k k k k

, ,

, .
ku v b u v

u v b u v

α α β β α
α α β β α

−

− −

= − = +

= + = +

The excited states of BCS theory are states with excess (unpaired) elec-
trons/holes or excited pairs such that

  ( )
†
q

† † †
q k k k –k

k q

0 .
BCS

a u v a b

α

≠

Ψ〉 = Ψ〉

= +∏  (6.20)

Here, one electron is at q state instead of the ground level. Generalizing 
this to a variational form we have

 
( )( )
( )

† † † †
k k k k –k k k k –k

k

† – †
k k k k –k .

k

0p

p
BCS

u v v u v a b

u v v

α β

α β

+ −

+

Ψ = + + +

= + + Ψ

∏

∏
 (6.21)

The normalization can be achieved by choosing |uk|
2 + |vk|

2 = 1 and | k
pu |2 + 

| kv+ |2 + | –
kv |2 = 1.

In a thermal state (canonical ensemble) one can write ( )†
k k kf Eα α +=  

= ( )k
–1

1Eeβ +

+ , where β defines the inverse temperature. Thus,
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( ) ( )
k

† † * * †
k k k k –k k k k –k

2 2† †
k k k –k –k

2 2 2– –
k k k k k k k k(1– ) (1 ) (1 ).

k

a a u a v u v

u v

v f v f f v f f

β α β

α α β β
+ + +

= + +

= +

= + − = + − −

 (6.22)

At T = 0, the Fermi function kf
±  = 0, therefore one can recover the usual 

BCS result as †
k ka a T = 0 = |vk|

2. Hence, by applying the properties of 
canonical transformation, one can write |up vk|

2 = |vk|
2 (1− kf

+ − –
kf ), | kv+ |2  

= kf
+ , | –

kv |2 = –
kf  and |up uk|

2 = |uk|
2(1− kf

+ − –
kf ). This signifies the probabil-

ities of having a pair, type a particle, type b particle and no particle in the 
k quantum state. It must be noted here that the formalism is identical with 
the finite temperature BCS theory where kf

± are the occupation numbers 
of quasi particles.

To derive the mean-field energy gap equation it is now necessary 
to minimize the Helmholtz free energy with respect to the variational 
parameters,

 
k k k k

k

ˆ ˆ ˆ ˆ ,

where, ln (1 ln (1 )) .

a a b b

B

F H TS N N

S k f f f fσ σ σ σ

σ

µ µ= − − −

 = − + − − ∑  (6.23)

Applying eqs (6.6) and (6.21) one can write,

( ) ( )
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kk
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∑

∑

∑

∑ ( )

( )

–
k q k k

kk

2 – – –
q k k k k q k k

kk kk

1
2

1 12 1 .
2 2

aa

bb bb

f U f f
V

U v f f f U f f
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+ + +
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−
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∑

∑ ∑ (6.24)

If we assume the quasi particle wave functions as, uk = cos θk and vk = sin 
θk and rewrite the chemical potential in the following way, k k k2 ,a bξ ξ ξ+ = +  
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–
k k k2 ,a bξ ξ ξ= −  2 a bµ µ µ= +  and 2h = µa − µb, then the free energy can be 

written as,
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∑

∑

∑  (6.25)

In the above calculation we have considered that the magnitude of elec-
tron–electron and hole–hole interaction is same, that is, Uaa = Ubb. Mini-
mizing eq (6.25) with respect to θk and rearranging them we obtain,

 ( )
1

kk k k k2 k k
k 2 – –1

kk kk k k k k k2 k

sin 2 (1 )
tan 2 .

2sin 1

ab
V

aa
V

U f f

U f f f f

θ
θ

ξξ θ

′ + −
′ ′ ′ ′′

′+ + +
′ ′ ′ ′ ′ ′′

− − − ∆
= ≡

 − − − + + 

∑
∑

  (6.26)

Borrowing the analogy from BCS theory we can further write,

 

k k
k 2 2

kk k

2
2 k k

k 2 2
kk k k k

sin 2

1and, sin 1 .
22(

E

EE

θ
ξ

ξθ
ξ ξ

∆ ∆
= ≡

+ ∆

 ∆
= = − ∆ + +  

 (6.27)

If we now minimize the free energy with respect to kf
+  and –

kf , (i.e., ∂〈F〉 / 
∂ kf

+  = 0, ∂〈F〉 / –
kf  = 0) and carry out necessary rearrangements, we will be 

able to write the mean-field gap equation. Thus, the coupled equations can 
be noted as
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 k
k kk k k

k k

1 (1 )
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V e
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∆
∆ = − −∑  (6.28)
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′

±

±

±

  = − − × − − + +    
 <
= + ∆ = 
 >

∑  (6.29)

where

( ) ( )k k k k k kk k k k k k
k

1 1, , .
2 2

aa a b
a bE E E E U f E

A
ξ ξ µ µ± − +

′ ′
′

= ± ∆ ∆ = ∆ + − ∆ = ∈ − − ∈ +∑

However, the density equations remains unchanged, that is, one needs to 
follow eqs (6.14) and (6.15).

After solving the coupled equations self-consistently, it is possible to 
comment on the nature of the bilayer system and their phase separations. 
Figures 6.5 and 6.6 describe the variation of the energy gap and quasi 
particle energies with wave vector. However, the interaction energy is 
chosen differently for both the figures. In Figure 6.5 is calculated only with 
inter-layer interaction, whereas in Figure 6.6 both intra- and inter-interac-
tions are taken into account. Moreover, in these two figures, the electron 
and hole numbers are considered as same that is the population balanced 
case (h = 0) thereby the density imbalance parameter α = 0. Expectedly 
in the figures we do not observe any variation in occupation number for 
electrons and holes with varying wave vector. Nevertheless, we can defi-
nitely conclude that inclusion of intra-layer interaction suppresses the gap 
function as evident from the figures.

In the usual mean-field description of the electron–hole bilayer, one 
uses the bare Coulomb interaction as given in eq (8). In realistic systems, 
if taken into account the many body effects, it becomes necessary to 
modify the bare Coulomb interaction. The many body effects can be suit-
ably modeled by a screening function which usually decreases the strength 
of the bare Coulomb interaction for electrons and holes in the normal 
phase. However, it is difficult to model an exact 2D screening function 
due to intra- and inter-layer interactions for condensed phase. Neverthe-
less for a qualitative understanding, one can consider the mechanism of 
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FIGURE 6.5 The left side figure depicts variation of Gap function, quasi-particle energies 
with wave vector for balanced density (α = 0) and rs = 3. The right side figure describes 
the variation of occupation number with wave vector. In this calculation, only interlayer 
interaction is taken into account.58

FIGURE 6.6 Both the figures are similar with Figure 6.5 in parameter values and 
observables; however in this figure, both inter-layer and intra-layer interactions are taken 
into account.58

gate screening. In this mechanism, the Coulomb potential of a point charge 
is replaced by that of a dipole consisting of the point charge and its image 
behind the metallic gate. An approximate description of the screening by 
the gate potential after taking into account the intra- and inter-layer inter-
actions can be expressed as,49
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2 2

q q q2 2 2 2

2 2, ,
ê ê

aa bb ab qde eU U U e
q q
π π

ε ε
−= = =

+ +
 (6.30)

respectively, where the parameter κ  is a screening wave number. In the 
calculation, the screening length associated with gate screening is consid-
ered as ~ 20aB, that is, κ = 1/20aB.

In Figures 6.7 and 6.8, the variation of gap function, quasi particle 
energy, and occupation number with wave vector is depicted for bare 
Coulomb interaction. In the numerical calculations, GaAs system param-
eters are taken into account where mass ratio turns out to be ma/mb = 
0.07/0.30 and background dielectric constant is ε = 12.9.

FIGURE 6.7 Gap function and quasi-particle energies associated with Sarma-2 phase 
at rs = 3 and α = −0.3 (excess hole) is depicted with bare Coulomb interactions for  
me/mh = 0.07/0.30 and d = aB.59

The solutions of energy gap, quasi particle energies, and occupation 
numbers are illustrated in Figures 6.7 and 6.8 for bare Coulomb interaction. 
The screened Coulomb counter part is presented in Figures 6.9 and 6.10. 
In all the cases the inter-layer distance is considered as one Bohr radius (d 
= aB ). The figures show the gap function (∆k), the quasi-particle energies 
( kE±) and their average (Ek) on the left panels, and the electron and hole 
occupation numbers na(k), nb (k) on the right panels. At T = 0 in the ground 
state, the quasi-particle levels with negative energy are occupied, positive 
energy levels are empty. The two different type of excitation branches 
can be observed due different electron–hole mass and chemical potential 
values. When one of the spectra crosses the zero energy axis, population 
imbalance is created. If the negative energy region includes the origin at 
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k = 0, the ground state has one Fermi surface defined as S1 (as evident 
in Figs. 6.8 and 6.10), otherwise it has two S2. Since the quasi-particle 
energy branch is continuous, the system still has gapless excitations. A 
close investigation of the gap function ∆k in the absence of screening 
(Figs. 6.7 and 6.8) shows that it has a cusp at the zero crossings of the 
quasi-particle energy, corresponding to a divergence in the derivative of 
∆k. This divergence leads to important consequences on the stability of the 
Sarma phase at T = 0.

FIGURE 6.8 Gap function and quasi-particle energies associated with Sarma-1 phase at 
rs = 5 and α = 0.5 (excess electron) is depicted with bare Coulomb interactions for me/mh = 
0.07/0.30 and d = aB.59

FIGURE 6.9 Gap function and quasi-particle energies associated with a Sarma-2 phase 
at rs = 2.5 and α = 0.2 (excess electrons) in presence of screened Coulomb interactions for 
me/mh = 0.07/0.30 and d = aB is illustrated. The lower panel show a Sarma-1 phase at rs = 5 
and α = 0.5 with excess electrons. Occupation numbers are shown on the right.59

Ap
pl

e 
Ac

ad
em

ic
 P

re
ss

Au
th

or
 C

op
y

For Non-Commercial Use



162 Nanotechnology-Driven Engineered Materials

FIGURE 6.10 Gap function and quasi-particle energies associated with a Sarma-1 phase 
at rs = 5 and α = 0.5 (excess electrons) in presence of screened Coulomb interactions for 
me/mh = 0.07/0.30 and d = aB is described.59

After elaborating the presence of Sarma phases it is now important to 
explicate their stability issue. The stability is usually understood by calcu-
lating the superfluid mass density.48 This quantity should be positive in a 
stable state and a negative value is identified with an instability towards an 
FFLO phase.48 The positivity of the superfluid mass density ensures that 
the Sarma phase is a local minimum of the energy with respect to fluctua-
tions of the gap parameter. However, there exists another possibility of an 
FFLO phase with finite pair momentum leading to a global minimum of 
the energy. When this happens, the local stability of the Sarma phase is 
known as metastability.

The superfluid mass density is given by49

 
2 3

e e h h 2 2
k k

1 1 1d
8 2 cosh ( / 2) cosh ( / 2)s m n m n kk

E E
βρ

π β β+ −

 
= + − + 

 
∫

  (6.31)

where β is the inverse temperature. At T = 0 this expression can be written 
as48
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 (6.32)
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where jk λ are the roots of kEλ with λ = ±. At zero temperature the last expres-
sion involves the derivative of ∆k at the zero crossings of kE±. However, 
it has been observed that numerical analysis turns our more efficient if 
the calculation is carried out for T → 0 instead of T = 0. The numerical 
simulation reveals that the derivative of the gap energy diverges logarith-
mically as T → 0. An analytical calculation demonstrates that for the bare 
Coulomb interaction as

 
2

k

* k*

d
ln as 0

d 2k k

e T T
k Eπε=

∆
≈ →  (6.33)

where k* is the zero crossing point at T = 0 as k → k*

  
2

*k k*

0 k*

d
ln * as ,

d 2T

e k k k k
k Eπε=

∆ ∆
≈ − → . (6.34)

This divergence is due to the presence of the long-range Coulomb interac-
tion, which is singular at q = 0, and due to the discontinuity of the Fermi 
function at T = 0. Since at finite temperature, the discontinuity of the Fermi 
function is smeared out, the divergence is also removed. Same argument 
can be applied for screening potential in place of bare Coulomb interaction.

The phase diagram presented in Figure 6.11 originates from the compar-
ison of the energies of the Sarma and normal phases and their stability 
scenario. As usual in the calculation, the inter-layer separation is taken as 
d = aB. Figure 6.11 can be considered as a continuation of the phase diagram 
presented in Figure 6.4, where the diagram was continuously modified to 
take into account different realistic situations. In precise, the top-left figure 
is drawn for bare inter-layer interactions only; in the adjacent figure, intra-
layer interaction is also added. The bottom-left figure depicts the phases 
for screened inter-layer interactions only, whereas the bottom right one is 
generated for screened inter- and intra-layer interactions.

For bare interactions, the superfluid density is always positive and the 
Sarma phase is stable locally as discussed earlier. Hence the top-left figure 
does not include the FFLO phase. However as mentioned earlier, there 
remains the possibility of first-order transition to FFLO phase. Therefore 
in the top panel two topologically distinct Sarma phases, Sarma-1 with one 
Fermi surface and Sarma-2 with two Fermi surfaces can be seen. The intra-
layer repulsive interactions will try to delocalize the charge carriers which 
effectively favor the normal phase with respect to the condensed phases. 
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This phenomenon can be seen in the top-right figure as the rs required to 
increase to draw the phase boundary between normal and condensed phases.

The bottom panel of Figure 6.11 presents the phase diagram when the 
gate screening is taken into account. In presence of the screening, inter-
layer interactions itself induces Sarma phases to be unstable for a large 
portion of the phase diagram, especially with excess holes, that is, α < 
0 and one can only find S1 phase making S2 phase completely absent. 
However, switching on the intra-layer interactions reduces the space occu-
pied by the FFLO phase and S2 phase can be obtained for small region in 
the phase diagram. Usually, the FFLO modulations of the gap function is 
accompanied by some density modulation in the real space. The repulsive 
Coulomb interaction does not favor such density modulations as an effect 
one cannot find FFLO states in presence of bare Coulomb interaction 
thereby ensuring a dominant Sarma phase. Therefore, the phase diagram 
becomes more intriguing when both intra-layer and screening effects are 
present. The presence of locally stable Sarma phases confirms that gapless 
superfluid states can be stable with momentum dependent interaction.

FIGURE 6.11 Zero temperature phase diagram for d = 1. The dashed line indicates µ = 0 
and the dashed dotted line indicates the separation between S1 and S2 phases.59
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6.2.1.4 COMMENTS ON INCLUSION OF IMPURITY

From the above discussion, it is very clear that the interplay of interac-
tions enriches the phase diagram dramatically and certain new phases 
emerge. We expect this situation will become more novel if we include 
some disorder. Here, we present a brief idea of how the disorder can be 
included in the mean-field formalism. It is in the same spirit as the usual 
atomic BCS–BEC crossover.

In atomic BCS–BEC crossover, a small amount of impurity can be 
embedded in the system by means Gaussian fluctuations. For that purpose, 
we will use the path integral formalism where we consider the Nambu 
propagator as

 1
0 ( ) ,d zG G V q σ− −= −  (6.35)

where Vd (q) is the disorder potential. We define,

 0

0
1

0 .
b
k k

b
k k

i
G

i
ω ξ

ω ξ
−  + ∆

=  ∆ − 
 (6.36)

We also assume small fluctuation about the pairing gap, that is, ∆k = 0
k∆  

+ δ∆k, where 0
k∆  is the pairing gap in the clean system and it causes small 

fluctuation δ∆k in presence of disorder. Hence the self-energy can be 
written as,

 ( ) ( ) ( ) .d z k kV q q qσ δ σ δ σ+ −= − + ∆ + ∆ −∑   (6.37)

From eq (6.11), one needs to calculate the effective action appropriately. 
For that purpose we can rewrite ln (1 + ΣG0) = G0Σ − 1

0 02 ( )G G′Σ′ Σ) when 
the Dyson equation is expanded till the second order. Hence the path inte-
gral over 

U
∆∆  − Tr ln G−1 can be expressed as sum of Bosonic action (SB), 

fermionic action (SF) and the action related to saddle point calculation 
S0. In other terms, S0 is the first order in the Dyson equation and for any 
extremum in the total action this term must be equated to zero. Therefore 
the effective action can be written as Seff = SB + S0 + SF. A detailed calcula-
tion reveals

 ( )
0 0

1 (0) (0) .
2

k k
B k k k k

k kkk k

S f f
U E

δ δ+ +′
′ ′

′′ ′

 ∆ ∆  = + − − ∆ + ∆   
 

∑ ∑  (6.38)
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Applying the saddle point condition ( )0effSδ
δ∆ = , one can write

 
( )

0
0 1 1

2
k

k kk k k
k k

U f f
V E

+ +′
′ ′ ′

′ ′

∆
∆ = − − −∑

 (6.39)

The fermionic action can be expressed as

 
( )

0 0
1

0 ,
,

, 0 0
,

1 ln ( ) (0) )

1where, Tr ( ) ( ) ( ) ( ) .
2

k k
F d z Fd

kk k ikk

Fd z z d d
k q

S Tr G k V
U

G k G k q V q V q

ω
β σ

β

σ σ
β

−

′ ′

∆ ∆  = − − + + Ω 

Ω =  + −  

∑ ∑

∑
 (6.40)

The bosonic action arising through fluctuation and impurity can be written 
as

 † † †1 ( ) ( ) ,
2B d

q
S V q V q Mχλ χ λ λ γ = + − + ∑  (6.41)

where

 
( )

, .
( )

k q k k k q k

k k q k q k

A B q
A B q

δ
χ λ

δ
+ +

+ +

Γ − Γ ∆   
= =   Γ − Γ ∆ −  

Here for the convenience of calculation, we have redefined the Greens 
functions in the following way

 0 0( ) , ( ) .k q k qk k

k q k qk k

AA
G k G k q

BB
+ +

+ +

ΓΓ   
= + =    ΓΓ   

 (6.42)

However, one can always look back to eq (6.36) for exact form of the 
Green’s function. The last term in the bosonic action turns out as

 ( )
1

† ( )
( ), ( )

( )
kk k q k k k qU k

k k
k k q k k q

A B q
M q q

qA B
δ

λ λ δ δ
δ

′ + +

+ +

+ Γ Γ  ∆ 
= ∆ − ∆     ∆ −Γ Γ   

It is well known that that 1 F

i

S
inβ µ

∂
∂ =  for the clean Fermi system. However, if 

we consider the existence of fluctuation and insert the impurity we obtain 
non zero bosonic action. Hence for system described above, one needs to 
apply
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1

1

eff
i

i

F B
i

i i

S
n

S S n

β µ

β µ µ

∂
=

∂

 ∂ ∂
+ = ∂ ∂ 

 (6.43)

Using the modified density equation along with the gap equation, one can 
now examine the effect of impurity in the phase separation of a bilayer 
system in a semiconductor.

6.2.2 EXPERIMENTS WITH EXCITONS

In the above discussion, we have elaborated the consequence of interplay 
of different types of interaction by means of mean-field theory. This we 
explicate with analogy from the atomic BCS–BEC crossover. However, 
it is interesting to note that excitons were first to be considered for the 
BCS–BEC crossover.61 On the reverse path, experiments with population 
imbalance in ultra-cold trapped Fermi atoms60 have stimulated a consider-
able amount of theoretical work on two-component Fermi systems with 
density imbalance.62,63 This upsurge in interest actually derives from the 
expectation of exotic phases in addition to the ordinary BCS pairing.62,64,65 
However, the presence of a trap and charge neutrality of the atoms inhibit 
the occurrence of many of the exotic phases. Therefore excitons are 
considered as a good candidate for observing such exotic phases because 
the Coulomb repulsion within each layer acts to suppress phase separa-
tion.66 Additionally, it is worth noting that the different electron and hole 
effective masses in GaAs, me and mh, and the non-local nature of the elec-
tron–hole attraction both favor the occurrence of exotic phases.48

In recent years, using electrical and optical techniques exciton conden-
sation has been observed in several different systems. Quantum Hall 
experiments at half-filling investigate BEC in electron–electron and hole–
hole bilayers. Optically generated bilayer excitons also show evidence 
for condensation. Off-late, excitons coupled to photons to form polari-
tons with even smaller mass leading to higher condensation temperatures 
have been experimentally detected.58 In the last couple of years, scientist 
are even able to form a droplet (about five electron–hole pairs together 
inside semiconductor) made up of electron–hole bilayers systems.67 This 
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is popularly known as dropleton. The creation of dropletons was carried 
out in an electron–hole plasma inside a GaAs quantum well by ultrashort 
laser pulses. As the name suggested dropleton are the first quasiparticle 
found to behave like a liquid. This discovery was sudden and the scientist 
had no idea about such property a priori. This emphasizes the richness of 
the context of bilayer systems. Also, it reminds that there are many issues 
to unravel in the process to understand this system properly.

6.3 APPLICATIONS

The importance of excitonic research lies in its multifacet possible appli-
cability. The current interests of different scientific and engineering 
endeavors are mostly getting converged to the field of energy and commu-
nication. Already there are different techniques of solar cells and micro-
chips which have made substantial enrichments in these fields but it is still 
far beyond the goal. In the domain of information technology and compu-
tation, the idea of quantum computers and simulators are already been 
placed. From a theoretical point of view, quantum information processing 
can be considered as a well-established field by now but the key issue of 
the design and realization of concrete solid-state implementation protocols 
are subject of intense investigation at the moment.

Recently, several proposals are placed for an all optical implementation 
of quantum information/computation with semiconductor macroatoms 
(quantum dots in zero dimension). These quantum dots can be defined as 
a portion of matter (say semiconductor) whose excitons are confined in 
all three spatial dimensions. The quantum hardware consists of an array 
of quantum dots and the computational degrees of freedom are energy-
selected inter-band optical transitions. The quantum-computing strategy 
exploits exciton-exciton interactions driven by ultrafast multicolor laser 
pulses. It allows a subpicosecond, decoherence-free, operation time scale 
in realistic semiconductor nanostructures.68,69 Also, there exist proposals 
based on charge-plus-spin degrees of freedom in semiconductor quantum 
dots.70 These propositions encourage a coherent optical control of elec-
tronic spins as well as of excitonic state. In addition, a proper tailoring of 
exciton-exciton Coulomb coupling (allowing for the implementation of 
single- as well as two-qubit gates) can introduce the full set of basic opera-
tions to implement quantum computing.
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Through the above discussion, we have tried to highlight the intriguing 
technological issues which are mainly governed by the physics of elec-
tron–hole systems. Therefore in this chapter, we have tried to narrate a 
theoretical perspective to present an overview for the electron–hole bilayer 
systems in semiconductors.
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