

Join us on our journey

Visit Nature news for the latest coverage and read Springer Nature's statement on the Ukraine conflict

Search Q ☐ Log in

Optical and Wireless Technologies pp 491–496 | Cite as

Ultra-Wide Band Microstrip Patch Antenna for Millimetre-Wave Band Applications

Aditi Chauhan, Utkarsh Jain, Aakash Warke, Manan Gupta, Ashok Kumar, Amrita Dixit & Arjun Kumar

Conference paper | First Online: 02 September 2021

371 Accesses

Part of the <u>Lecture Notes in Electrical Engineering</u> book series (LNEE,volume 771)

Abstract

This paper presents the design for a compact microstrip patch antenna that operates in the Ka band with dimensions (13 \times 13) mm² and is applicable for 5G communication. The antenna resonates at a central frequency of 34.2 GHz, providing a gain of 7.5 dB. It comprises of a partial ground structure in order to provide a large bandwidth ranging from 24.1 to 49.9 GHz. This antenna has been simulated on Ansys HFSS 19.1 using Rogers RO4003, of dielectric constant 3.55, as the substrate.

Keywords

Ka band Millimetre Wave (mmWave) Partial grounds Ultra-wide band Ansys HFSS This is a preview of subscription content, access via your institution.

References

1. Baldemair R, Dahlman E, Parkvall S, Selen Y, Balachandran K, Irnich T, Fodor G, Tullberg H (2013) Future wireless communications. In: 2013 IEEE 77th vehicular technology conference (VTC Spring). IEEE, pp 1-5

Google Scholar

2. Imran D, Faroogi MM, Khattak MI, Ullah Z, Khan MI, Khattak MA, Dar H (2018) Millimeter wave microstrip patch antenna for 5G mobile communication. In: 2018 international conference on engineering and emerging technologies (ICEET). IEEE, pp 1-6

Google Scholar

3. Lodro Z, Shah N, Mahar E, Tirmizi SB, Lodro M (2019) mmWave novel multiband microstrip patch antenna design for 5G communication. In: 2019 2nd international conference on computing, mathematics and engineering technologies (iCoMET). IEEE, pp 1-4

Google Scholar

✓ Chapter EUR 24.95 Price excludes VAT (India)

- DOI: 10.1007/978-981-16-2818-4_53
- · Chapter length: 6 pages
- Instant PDF download
- · Readable on all devices

Rights and permissions

Copyright information

4 Center DMCRD (2015) Samsung electronics "5G Vision", White paper (online)

Google Scholar

 Goyal RK, Modani US (2018) A compact microstrip patch antenna at 28 GHz for 5G wireless applications. In: 2018 3rd international conference and workshops on recent advances and innovations in engineering (ICRAIE). IEEE, pp 1–2

Google Scholar

 Kaushal A, Tyagi S (2015) Microstrip patch antenna its types, merits demerits and its applications

Google Scholar

 Ojaroudiparchin N, Shen M, Pedersen GF (2015) A 28 GHz FR-4 compatible phased array antenna for 5G mobile phone applications. In: 2015 international symposium on antennas and propagation (ISAP). IEEE, pp 1–4

Google Scholar

8. Hong W, Baek K, Lee Y, Kim YG (2014) Design and analysis of a low-profile 28 GHz beam steering antenna solution for future 5G cellular applications. In: 2014 IEEE MTT-S international microwave symposium (IMS2014). IEEE, pp 1–4

Google Scholar

9. Yoon N, Seo C (2017) A 28-GHz wideband 2 \times 2 U-slot patch array antenna. J Electromagn Eng Sci 17(3):133–137

Google Scholar

10. Neha K, Sunil S (2018) A 28-GHz U-slot microstrip patch antenna for 5G applications. Int J Eng Dev Res 6(1):363–368

Google Scholar

11. Haraz OM, Elboushi A, Alshebeili SA, Sebak A-R (2014) Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks. IEEE Access 2:909–913

Google Scholar

Download references **±**

Author information

Affiliations

Department of Physics, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India

Aditi Chauhan, Utkarsh Jain, Aakash Warke & Ashok Kumar

Department of Electronics and Communication Engineering, School of Engineering and Applied Sciences, Bennett University, Greater Noida, India

Manan Gupta, Amrita Dixit & Arjun Kumar

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Chauhan, A. *et al.* (2022). Ultra-Wide Band Microstrip Patch Antenna for Millimetre-Wave Band Applications. In: Tiwari, M., Maddila, R.K., Garg, A.K., Kumar, A., Yupapin, P. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol 771. Springer, Singapore. https://doi.org/10.1007/978-981-16-2818-4_53

Download citation

<u>.RIS</u>

<u> ENW</u>

<u> BIB</u>

<u> BIB</u>

DOI

https://doi.org/10.1007/978-981-16-2818-4_53

Published Publisher Name Print ISBN

02 September 2021 Springer, Singapore 978-981-16-2817-7

Online ISBN eBook Packages
978-981-16-2818-4 <u>Engineering</u>
Engineering (R0)

Over 10 million scientific documents at your fingertips

Academic Edition Corporate Edition

Home | Impressum | Legal information | Privacy statement | California Privacy Statement | How we use cookies | Manage cookies/Do not sell my data | Accessibility | FAQ | Contact us | Affiliate program

Not logged in - 14.97.132.202 Bennett University (3995607472)

SPRINGER NATURE

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.